Skip to main content
Log in

Temperature evolution of Trp-cage folding pathways: An analysis by dividing the probability flux field into stream tubes

  • ORIGINAL PAPER
  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

Owing to its small size and very fast folding rate, the Trp-cage miniprotein has become a benchmark system to study protein folding. Two folding pathways were found to be characteristic of this protein: pathway I, in which the hydrophobic collapse precedes the formation of α-helix, and pathway II, in which the events occur in the reverse order. At the same time, the relative contribution of these pathways at different temperatures as well as the nature of transition from one pathway to the other remain unclear. To gain insight into this issue, we employ a recently proposed hydrodynamic description of protein folding, in which the process of folding is considered as a motion of a “folding fluid” (Chekmarev et al., Phys. Rev. Lett. 100(1), 018107 2008). Using molecular dynamics simulations, we determine the field of probability fluxes of transitions in a space of collective variables and divide it into stream tubes. Each tube contains a definite fraction of the total folding flow and can be associated with a certain pathway. Specifically, three temperatures were considered, T = 285K, T = 315K, and T = 325K. We have found that as the temperature increases, the contribution of pathway I, which is approximately 90% of the total folding flow at T = 285K, decreases to approximately 10% at T = 325K, i.e., pathway II becomes dominant. At T = 315K, both pathways contribute approximately equally. All these temperatures are found below the calculated melting point, which suggests that the Trp-cage folding mechanism is determined by kinetic factors rather than thermodynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Neidigh, J.W., Fesinmeyer, R.M., Andersen, N.H.: Designing a 20-residue protein. Nat. Struct. Mol. Biol. 9(6), 425–430 (2002)

    Article  Google Scholar 

  2. Qiu, L., Pabit, S.A., Roitberg, A.E., Hagen, S.J.: Smaller and faster: The 20-residue Trp-cage protein folds in 4 μ s. J. Am. Chem. Soc. 124(44), 12952–12953 (2002)

    Article  Google Scholar 

  3. Ahmed, Z., Beta, I.A., Mikhonin, A.V., Asher, S.A.: UV-resonance Raman thermal unfolding study of Trp-cage shows that it is not a simple two-state miniprotein. J. Am. Chem. Soc. 127(31), 10943–10950 (2005)

    Article  Google Scholar 

  4. Neuweiler, H., Doose, S., Sauer, M.: A microscopic view of miniprotein folding: Enhanced folding efficiency through formation of an intermediate. Proc. Natl. Acad. Sci. USA 102(46), 16650–16655 (2005)

    Article  ADS  Google Scholar 

  5. Mok, K.H., Kuhn, L.T., Goez, M., Day, I.J., Lin, J.C., Andersen, N.H., Hore, P.: A pre-existing hydrophobic collapse in the unfolded state of an ultrafast folding protein. Nature 447(7140), 106–109 (2007)

    Article  ADS  Google Scholar 

  6. Streicher, W.W., Makhatadze, G.I.: Unfolding thermodynamics of Trp-cage, a 20-residue miniprotein, studied by differential scanning calorimetry and circular dichroism spectroscopy. Biochemistry 46(10), 2876–2880 (2007)

    Article  Google Scholar 

  7. Culik, R.M., Serrano, A.L., Bunagan, M.R., Gai, F.: Achieving secondary structural resolution in kinetic measurements of protein folding: A case study of the folding mechanism of Trp-cage. Angew. Chem. Int. Ed. 123(46), 11076–11079 (2011)

    Article  Google Scholar 

  8. Rovó, P., Farkas, V., Hegyi, O., Szolomájer-Csikós, O., Tóth, G.K., Perczel, A.: Cooperativity network of Trp-cage miniproteins: Probing salt-bridges. J. Pept. Sci. 17(9), 610–619 (2011)

    Article  Google Scholar 

  9. Halabis, A., Zmudzinska, W., Liwo, A., Oldziej, S.: Conformational dynamics of the Trp-cage miniprotein at its folding temperature. J. Phys. Chem. B 116 (23), 6898–6907 (2012)

    Article  Google Scholar 

  10. Lai, Z., Preketes, N.K., Mukamel, S., Wang, J.: Monitoring the folding of Trp-cage peptide by two-dimensional infrared (2dir) spectroscopy. J. Phys. Chem. B 117(16), 4661–4669 (2013)

    Article  Google Scholar 

  11. Meuzelaar, H., Marino, K.A., Huerta-Viga, A., Panman, M.R., Smeenk, L.E., Kettelarij, A.J., van Maarseveen, J.H., Timmerman, P., Bolhuis, P.G., Woutersen, S.: Folding dynamics of the Trp-cage miniprotein: Evidence for a native-like intermediate from combined time-resolved vibrational spectroscopy and molecular dynamics simulations. J. Phys. Chem. B 117(39), 11490–11501 (2013)

    Article  Google Scholar 

  12. Rovó, P., Stráner, P., Láng, A., Bartha, I., Huszár, K., Nyitray, L., Perczel, A.: Structural insights into the Trp-cage folding intermediate formation. Chem. Eur. J. 19(8), 2628–2640 (2013)

    Article  Google Scholar 

  13. Byrne, A., Williams, D.V., Barua, B., Hagen, S.J., Kier, B.L., Andersen, N.H.: Folding dynamics and pathways of the Trp-cage miniproteins. Biochemistry 53 (38), 6011–6021 (2014)

    Article  Google Scholar 

  14. Abaskharon, R.M., Culik, R.M., Woolley, G.A., Gai, F.: Tuning the attempt frequency of protein folding dynamics via transition-state rigidification: Application to Trp-cage. J. Phys. Chem. Lett. 6(3), 521–526 (2015)

    Article  Google Scholar 

  15. Snow, C.D., Zagrovic, B., Pande, V.S.: The Trp-cage: Folding kinetics and unfolded state topology via molecular dynamics simulations. J. Am. Chem. Soc. 124 (49), 14548–14549 (2002)

    Article  Google Scholar 

  16. Pitera, J.W., Swope, W.: Understanding folding and design: Replica-exchange simulations of “Trp-cage” miniproteins. Proc. Natl. Acad. Sci. USA 100, 7587–7592 (2003)

    Article  ADS  Google Scholar 

  17. Zhou, R.: Trp-cage: Folding free energy landscape in explicit water. Proc. Natl. Acad. Sci. USA 100(23), 13280–13285 (2003)

    Article  ADS  Google Scholar 

  18. Chowdhury, S., Lee, M.C., Duan, Y.: Characterizing the rate-limiting step of Trp-cage folding by all-atom molecular dynamics simulations. J. Phys. Chem. B 108 (36), 13855–13865 (2004)

    Article  Google Scholar 

  19. Linhananta, A., Boer, J., MacKay, I.: The equilibrium properties and folding kinetics of an all-atom go model of the Trp-cage. J. Chem. Phys. 122(11), 114901 (2005)

    Article  ADS  Google Scholar 

  20. Juraszek, J., Bolhuis, P.: Sampling the multiple folding mechanisms of Trp-cage in explicit solvent. Proc. Natl. Acad. Sci. USA 103(43), 15859–15864 (2006)

    Article  ADS  Google Scholar 

  21. Paschek, D., Hempel, S., García, A.E.: Computing the stability diagram of the Trp-cage miniprotein. Proc. Natl. Acad. Sci. USA 105(46), 17754–17759 (2008)

    Article  ADS  Google Scholar 

  22. Marinelli, F., Pietrucci, F., Laio, A., Piana, S.: A kinetic model of Trp-cage folding from multiple biased molecular dynamics simulations. PLoS Comput. Biol. 5 (8), 1000452 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  23. Day, R., Paschek, D., Garcia, A.E.: Microsecond simulations of the folding/unfolding thermodynamics of the Trp-cage miniprotein. Proteins: Struct. Funct. Bioinf. 78(8), 1889–1899 (2010)

    Google Scholar 

  24. Lindorff-Larsen, K., Piana, S., Dror, R.O., Shaw, D.E.: How fast-folding proteins fold. Science 334(6055), 517–520 (2011)

    Article  ADS  Google Scholar 

  25. Zheng, W., Gallicchio, E., Deng, N., Andrec, M., Levy, R.M.: Kinetic network study of the diversity and temperature dependence of Trp-cage folding pathways: Combining transition path theory with stochastic simulations. J. Phys. Chem. B 115 (6), 1512–1523 (2011)

    Article  Google Scholar 

  26. Han, W., Schulten, K.: Further optimization of a hybrid united-atom and coarse-grained force field for folding simulations: Improved backbone hydration and interactions between charged side chains. J. Chem. Theory Comput. 8, 4413–4424 (2012)

    Article  Google Scholar 

  27. Marino, K.A., Bolhuis, P.G.: Confinement-induced states in the folding landscape of the Trp-cage miniprotein. J. Phys. Chem. B 116, 11872–11880 (2012)

    Article  Google Scholar 

  28. Shao, Q., Shi, J., Zhu, W.: Enhanced sampling molecular dynamics simulation captures experimentally suggested intermediate and unfolded states in the folding pathway of Trp-cage miniprotein. J. Chem. Phys. 137(12), 125103 (2012)

    Article  ADS  Google Scholar 

  29. Deng, N., Dai, W., Levy, R.M.: How kinetics within the unfolded state affects protein folding: An analysis based on Markov state models and an ultra-long MD trajectory. J. Phys. Chem. B 117(42), 12787–12799 (2013)

    Article  Google Scholar 

  30. Han, W., Schulten, K.: Characterization of folding mechanisms of Trp-cage and WW-domain by network analysis of simulations with a hybrid-resolution model. J. Phys. Chem. B 117(42), 13367–13377 (2013)

    Article  Google Scholar 

  31. Juraszek, J., Saladino, G., Van Erp, T., Gervasio, F.: Efficient numerical reconstruction of protein folding kinetics with partial path sampling and pathlike variables. Phys. Rev. Lett. 110(10), 108106 (2013)

    Article  ADS  Google Scholar 

  32. Marinelli, F.: Following easy slope paths on a free energy landscape: The case study of the Trp-cage folding mechanism. Biophys. J. 105(5), 1236–1247 (2013)

    Article  ADS  Google Scholar 

  33. Du, W., Bolhuis, P.G.: Sampling the equilibrium kinetic network of Trp-cage in explicit solvent. J. Chem. Phys. 140(19), 195102 (2014)

    Article  ADS  Google Scholar 

  34. Kannan, S., Zacharias, M.: Role of tryptophan side chain dynamics on the Trp-cage mini-protein folding studied by molecular dynamics simulations. PloS ONE 9 (2), 88383 (2014)

    Article  ADS  Google Scholar 

  35. Mou, L., Jia, X., Gao, Y., Li, Y., Zhang, J.Z., Mei, Y.: Folding simulation of Trp-cage utilizing a new AMBER compatible force field with coupled main chain torsions. J. Theor. Comput. Chem. 13(4), 1450026 (2014)

    Article  Google Scholar 

  36. Orsi, M., Ding, W., Palaiokostas, M.: Direct mixing of atomistic solutes and coarse-grained water. J. Chem. Theory Comput. 10, 4684–4693 (2014)

    Article  Google Scholar 

  37. Kim, S.B., Dsilva, C.J., Kevrekidis, I.G., Debenedetti, P.G.: Systematic characterization of protein folding pathways using diffusion maps: Application to Trp-cage miniprotein. J. Chem. Phys. 142(8), 085101 (2015)

    Article  ADS  Google Scholar 

  38. Palese, L.L.: Correlation analysis of Trp-cage dynamics in folded and unfolded states. J. Phys. Chem. B 119, 15568–15573 (2015)

    Article  Google Scholar 

  39. Zhou, C.Y., Jiang, F., Wu, Y.D.: Folding thermodynamics and mechanism of five Trp-cage variants from replica-exchange MD simulations with RSFF2 force field. J. Chem. Theory Comput. 11, 5473–5480 (2015)

    Article  Google Scholar 

  40. Andryushchenko, V.A., Chekmarev, S.F.: A hydrodynamic view of the first-passage folding of Trp-cage miniprotein. Eur. Biophys. J. 45, 229–243 (2016)

    Article  Google Scholar 

  41. Pandini, A., Fornili, A.: Using local states to drive the sampling of global conformations in proteins. J. Chem. Theory Comput. 12, 1368–1379 (2016)

    Article  Google Scholar 

  42. Chekmarev, S.F., Palyanov, A.Y., Karplus, M.: Hydrodynamic description of protein folding. Phys. Rev. Lett. 100(1), 018107 (2008)

    Article  ADS  Google Scholar 

  43. Landau, L., Lifshitz, E.: Fluid Mechanics. Pergamon, New York (1987)

    MATH  Google Scholar 

  44. Kalgin, I.V., Chekmarev, S.F., Karplus, M.: First passage analysis of the folding of a β-sheet miniprotein: Is it more realistic than the standard equilibrium approach. J. Phys. Chem. B 118(16), 4287–4299 (2014)

    Article  Google Scholar 

  45. Brooks, B.R., Brooks, C.L., MacKerell, A.D., Nilsson, L., Petrella, R.J., Roux, B., Won, Y., Archontis, G., Bartels, C., Boresch, S., Caflisch, A., Caves, L., Cui, Q., Dinner, A.R., Feig, M, Fischer, S., Gao, J., Hodoscek, M., Im, W., Kuczera, K., Lazaridis, T., Ma, J., Ovchinnikov, V., Paci, E., Pastor, R.W., Post, C.B., Pu, J.Z., Schaefer, M., Tidor, B., Venable, R.M., Woodcock, H.L., Wu, X., Yang, W., York, D.M., Karplus, M.: CHARMM: The biomolecular simulation program. J. Comput. Chem. 30(10), 1545–1614 (2009)

    Article  Google Scholar 

  46. Neria, E., Fischer, S., Karplus, M.: Simulation of activation free energies in molecular systems. J. Chem. Phys. 105(5), 1902–1921 (1996)

    Article  ADS  Google Scholar 

  47. Ferrara, P., Apostolakis, J., Caflisch, A.: Evaluation of a fast implicit solvent model for molecular dynamics simulations. Proteins Struct. Funct. Bioinf. 46(1), 24–33 (2002)

    Article  Google Scholar 

  48. Ryckaert, J.P., Ciccotti, G., Berendsen, H.J.: Numerical integration of the Cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J. Comput. Phys. 23, 327–341 (1977)

    Article  ADS  Google Scholar 

  49. Privalov, P.L.: Stability of proteins. Small Globular Proteins. Adv. Prot. Chem. 33, 167–241 (1979)

    Article  Google Scholar 

  50. Taverna, D.M., Goldstein, R.A.: Why are proteins marginally stable? Proteins Struct. Funct. Genet. 46, 105–109 (2002)

    Article  Google Scholar 

  51. DuBay, K., Bowman, G.R., Geissler, P.L.: Fluctuations within folded proteins: Implications for thermodynamic and allosteric regulation. Acc. Chem. Res. 48, 1098–1105 (2015)

    Article  Google Scholar 

  52. Tang, Q.Y., Zhang, Y.Y, Wang, J., Wang, W., Chialvo, D.R.: Critical fluctuations in the native state of proteins. Phys. Rev. Lett. 118, 088102 (2017)

    Article  ADS  Google Scholar 

  53. Zhou, R.: Free energy landscape of protein folding in water: Explicit vs. implicit solvent. Proteins Struct. Funct. Bioinf. 53(2), 148–161 (2003)

    Article  Google Scholar 

  54. Ferrara, P., Apostolakis, J., Caflisch, A.: Thermodynamics and kinetics of folding of two model peptides investigated by molecular dynamics simulations. J. Phys. Chem. B 104(20), 5000–5010 (2000)

    Article  Google Scholar 

  55. Eaton, W.A., Muñoz, V., Hagen, S.J., Jas, G.S., Lapidus, L.J., Henry, E.R., Hofrichter, J.: Fast kinetics and mechanisms in protein folding. Annu. Rev. Biophys. Biomol. Struct. 29(1), 327–359 (2000)

    Article  Google Scholar 

  56. Jolliffe, I.: Principal Component Analysis. Springer Verlag, New York (2002)

    MATH  Google Scholar 

  57. Fraley, C., Raftery, A.E.: Model-based clustering, discriminant analysis, and density estimation. J. Am. Stat. Assoc. 97(458), 611–631 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  58. Chekmarev, S.F.: Equilibration of protein states: A time dependent free-energy disconnectivity graph. J. Phys. Chem. B 119(26), 8340–8348 (2015)

    Article  Google Scholar 

  59. Andersen, C.A., Palmer, A.G., Brunak, S., Rost, B.: Continuum secondary structure captures protein flexibility. Structure 10, 175–184 (2002)

    Article  Google Scholar 

  60. Seeber, M., Cecchini, M., Rao, F., Settanni, G., Caflisch, A.: WORDOM: A program for efficient analysis of molecular dynamics simulations. Bioinformatics 23 (19), 2625–2627 (2007)

    Article  Google Scholar 

  61. Hanwell, M.D., Curtis, D.E., Lonie, D.C., Vandermeersch, T., Zurek, E., Hutchison, G.R.: Avogadro: An advanced semantic chemical editor, visualization, and analysis platform. J. Cheminf. 4, 1–17 (2012)

    Article  Google Scholar 

  62. Kalgin, I.V., Karplus, M., Chekmarev, S.F.: Folding of a SH3 domain: Standard and “hydrodynamic” analyses. J. Phys. Chem. B 113(38), 12759–12772 (2009)

    Article  Google Scholar 

  63. Kalgin, I.V., Caflisch, A., Chekmarev, S.F., Karplus, M.: New insights into the folding of a beta-sheet miniprotein in a reduced space of collective hydrogen bond variables: Application to a hydrodynamic analysis of the folding flow. J. Phys. Chem. B 117, 6092–6105 (2013)

    Article  Google Scholar 

  64. Kalgin, I.V., Chekmarev, S.F.: Turbulent phenomena in protein folding. Phys. Rev. E 83(1), 011920 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  65. Landau, L., Lifshitz, E.: Statistical Physics Part 1. Pergamon, New York (1980)

    Google Scholar 

  66. Chekmarev, S.F.: Protein folding: Complex potential for the driving force in a two-dimensional space of collective variables. J. Chem. Phys. 139(14), 145103 (2013)

    Article  ADS  Google Scholar 

  67. Baldin, R.L.: Temperature dependence of the hydrophobic interaction in protein folding. Proc. Natl. Acad. Sci. USA 83, 8069–8072 (1986)

    Article  ADS  Google Scholar 

  68. Sadqi, M., Lapidus, L.J., Victor Muñoz, V.: How fast is protein hydrophobic collapse. Proc. Natl. Acad. Sci. USA 100, 12117–12122 (2003)

    Article  ADS  Google Scholar 

  69. Chan, H.S., Bromberg, S., Dill, K.A.: Models of cooperativity in protein folding. Phil. Trans. R. Soc. Lond. B 348, 61–70 (1995)

    Article  ADS  Google Scholar 

  70. Chan, H.S., Zhang, Z., Wallin, S., Liu, Z.: Cooperativity, local-nonlocal coupling, and nonnative interactions: Principles of protein folding from coarse-grained models. Annu. Rev. Phys. Chem. 62, 301–326 (2011)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergei F. Chekmarev.

Ethics declarations

This work was performed under a grant from the Russian Science Foundation (No. 14-14-00325). The authors declare that they have no conflicts of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 1.98 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andryushchenko, V.A., Chekmarev, S.F. Temperature evolution of Trp-cage folding pathways: An analysis by dividing the probability flux field into stream tubes. J Biol Phys 43, 565–583 (2017). https://doi.org/10.1007/s10867-017-9470-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10867-017-9470-7

Keywords

Navigation