Skip to main content
Log in

A spectroscopic investigation of the interaction between c-MYC DNA and tetrapyridinoporphyrazinatozinc(II)

  • Original Paper
  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

The c-MYC gene plays an important role in the regulation of cell proliferation and growth and it is overexpressed in a wide variety of human cancers. Around 90% of c-MYC transcription is controlled by the nuclease-hypersensitive element III1 (NHE III1), whose 27-nt purine-rich strand has the ability to form a G-quadruplex structure under physiological conditions. Therefore, c-MYC DNA is an attractive target for drug design, especially for cancer chemotherapy. Here, the interaction of water-soluble tetrapyridinoporphyrazinatozinc(II) with 27-nt G-rich strand (G/c-MYC), its equimolar mixture with the complementary sequence (GC/c-MYC) and related C-rich oligonucleotide (C/c-MYC) is investigated. Circular dichroism (CD) measurements of the G-rich 27-mer oligonucleotide in 150 mM KCl, pH 7 demonstrate a spectral signature consistent with parallel G-quadruplex DNA. Furthermore, the CD spectrum of the GC rich oligonucleotide shows characteristics of both duplex and quadruplex structures. Absorption spectroscopy implies that the complex binding of G/c-MYC and GC/c-MYC is a two-step process; in the first step, a very small red shift and hypochromicity and in the second step, a large red shift and hyperchromicity are observed in the Q band. Emission spectra of zinc porphyrazine are quenched upon addition of three types of DNA. According to the results of spectroscopy, it can be concluded the dominant binding mode is probably, outside binding and end stacking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Meyer, N., Penn, L.Z.: Reflecting on 25years with MYC. Nat. Rev. Cancer 8, 976–790 (2008)

    Article  Google Scholar 

  2. Pelengaris, S., Rudolph, B., Littlewood, T.: Action of Myc in vivo-proliferation and apoptosis. Curr. Opin. Genet. Dev. 10, 100–105 (2000)

    Article  Google Scholar 

  3. Facchini, L.M., Penn, L.Z.: The molecular role of Myc in growth and transformation: recent discoveries to new insights. FASEB J. 12, 633–651 (1998)

    Google Scholar 

  4. Nema, R.: c-Myc (Oncogenic) transcription factor. Ind. J. Fund. Appl. Life Sci. 1, 2231–6345 (2011)

    Google Scholar 

  5. Lutz, W., Leon, J., Eilers, M.: Eilers, Contributions of Myc to tumorigenesis. Biochim. Biophys. Acta 1602, 61–71 (2002)

    Google Scholar 

  6. Marcu, K.B., Bossone, S.A., Patel, A.J.: Myc function and regulation. Annu. Rev. Biochem. 61, 809–860 (1992)

    Article  Google Scholar 

  7. Simonsson, T., Pecinka, P., Kubista, M.: DNA tetraplex formation in the control region of c-Myc. Nucleic Acids Res. 26, 1167–1172 (1998)

    Article  Google Scholar 

  8. Sun, D., Hurley, L.H.: The importance of negative superhelicity in inducing the formation of G-quadruplex and i-motif structures in the c-Myc promoter: implications for drug targeting and control of gene expression. J. Med. Chem. 52, 2863–2874 (2009)

    Article  Google Scholar 

  9. Brooks, T.A., Hurley, L.H.: Targeting MYC expression through G-quadruplexes. Genes Cancer 1, 641–649 (2010)

    Article  Google Scholar 

  10. Yoon, J., Kang, H., Sung, J., Park, H. J., Hohng, S.: Highly polymorphic G-quadruplexes in the c-MYCPromoter. Bull. Korean Chem. Soc. 31, 1025–1028 (2010)

    Article  Google Scholar 

  11. Siddiqui-Jain, A, Grand, C.L, Bearss, D.J, Hurley, L.H.: Direct evidence for a G-quadruplex in a promoter region and its targeting with a small molecule to repress c-MYC transcription. Proc. Natl. Acad. Sci. U.S.A. 99, 11593–1158 (2002)

  12. Yang, D, Okamoto, K.: Structural insights into G-quadruplexes: towards new anticancer drugs. Future Med. Chem. 2, 619–646 (2010)

    Article  Google Scholar 

  13. Freyer, M.W., Buscaglia, R., Kaplan, K., Cashman, D., Hurley, L.H., Lewis, E.A.: Biophysical studies of the c-MYC NHE III1 promoter: model quadruplex interactions with a cationic porphyrin. Biophys. J 92, 2007–2015 (2007)

    Article  Google Scholar 

  14. Seenisamy, J., Bashyam, S., Gokhale, V., Vankayalapati, H., Sun, D., Siddiqui-Jain, A., Streiner, N., Shin-ya, K., White, E., Wilson, W.D., Hurley, L.H.: Design and synthesis of an expanded porphyrin that has selectivity for the c-MYC G-quadruplex structure. J. Am. Chem. Soc. 127, 2944–2959 (2005)

    Article  Google Scholar 

  15. Safaei, E., Ranjbar, B., Hasani, L.: A study on the self assembly of Fe(II) and dual binding of Ni(II) porphyrazines on CT-DNA. J. Porphyrins Phthalocyanines 11, 805–814 (2007)

    Article  Google Scholar 

  16. Asadi, M., Safaei, E., Ranjbar, B., Hasani, L.: Thermodynamic and spectroscopic study on the binding of cationic Zn(II) and Co(II) tetrapyridinoporphyrazines to calf thymus DNA: the role of the central metal in binding parameters. New J. Chem. 28, 1227–1234 (2004)

    Article  Google Scholar 

  17. Kelly, S M., Jess, T. J., Price, N.C.: How to study proteins by circular dichroism. Biochem. Biophys. Acta 1751, 119–139 (2005)

    Google Scholar 

  18. Kypr, J., Kejnovska, I., Renciuk, D., Vorlickova, M.: Circular dichroism and conformational polymorphism of DNA. Nucleic Acids Res. 37, 1713–1725 (2009)

    Article  Google Scholar 

  19. Paramasivan, S., Rujan, I., Bolton, P.H.: Circular dichroism of quadruplex DNAs: applications to structure, cation effects and ligand binding. Methods 43, 324–331 (2007)

    Article  Google Scholar 

  20. Vorlickova, M., Kejnovska, I., Sagi, J., Renciuk, D., Bednarova, K., Motlova, J., Kypr, J.: Circular dichroism and guanine quadruplexes. Methods 57, 64–75 (2012)

    Article  Google Scholar 

  21. Anantha, N.V., Azam, M., Sheardy, R.D.: Porphyrin binding to quadruplexed T4G4. Biochemistry 37, 2709–2714 (1998)

    Article  Google Scholar 

  22. Yamashita, T., Uno, T., Ishikawa, Y.: Guanine quadruplex DNA by the binding of porphyrins with cationic side arms. Bioorg. Med. Chem. 13, 2423–2430 (2005)

    Article  Google Scholar 

  23. Ghazaryan, A.A., Dalyan, Y.B., Haroutiunian, S.G., Tikhomirova, A., Taulier, N., Wells, J.W., Chalikian, T.V.: Thermodynamics of interactions of water-soluble porphyrins with RNA duplexes. J. Am. Chem. Soc. 128, 1914–1921 (2006)

    Article  Google Scholar 

  24. Suh, D., Chaires, J.B.: Criteria for the mode of binding of DNA binding agents. Bioorg. Med. Chem. 3, 723–728 (1995)

    Article  Google Scholar 

  25. Nagesh, N., Sharma, V.K., Kumar, A.G., Lewis, E.A.: Effect of ionic strength on porphyrin drugs interaction with quadruplex DNA formed by the promoter region of C-myc and Bcl2 oncogenes. J. Nucleic Acids 2010, 1–9 (2010)

    Article  Google Scholar 

  26. Zhao, P., Xu, L., Huang, J., Fu, B., Yu, H., Ji, L.: Cationic porphyrin–anthraquinone dyads: modes of interaction with G-quadruplex DNA. Dyes Pigments 82, 81–87 (2009)

    Article  Google Scholar 

Download references

Acknowledgments

Financial support for this work was provided by the Research Council of Institute for Advanced Studies in Basic Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leila Hassani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hassani, L., Fazeli, Z., Safaei, E. et al. A spectroscopic investigation of the interaction between c-MYC DNA and tetrapyridinoporphyrazinatozinc(II). J Biol Phys 40, 275–283 (2014). https://doi.org/10.1007/s10867-014-9348-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10867-014-9348-x

Keywords

Navigation