Skip to main content
Log in

The role of tubulin in the mitochondrial metabolism and arrangement in muscle cells

  • Mini-review
  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

Tubulin, a well-known component of the microtubule in the cytoskeleton, has an important role in the transport and positioning of mitochondria in a cell type dependent manner. This review describes different functional interactions of tubulin with cellular protein complexes and its functional interaction with the mitochondrial outer membrane. Tubulin is present in oxidative as well as glycolytic type muscle cells, but the kinetics of the in vivo regulation of mitochondrial respiration in these muscle types is drastically different. The interaction between VDAC and tubulin is probably influenced by such factors as isoformic patterns of VDAC and tubulin, post-translational modifications of tubulin and phosphorylation of VDAC. Important factor of the selective permeability of VDAC is the mitochondrial creatine kinase pathway which is present in oxidative cells, but is inactive or missing in glycolytic muscle and cancer cells. As the tubulin-VDAC interaction reduces the permeability of the channel by adenine nucleotides, energy transfer can then take place effectively only through the mitochondrial creatine kinase/phosphocreatine pathway. Therefore, closure of VDAC by tubulin may be one of the reasons of apoptosis in cells without the creatine kinase pathway. An important question in tubulin regulated interactions is whether other proteins are interacting with tubulin. The functional interaction may be direct, through other proteins like plectins, or influenced by simultaneous interaction of other complexes with VDAC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Anflous K, Blondel O, Bernard A, Khrestchatisky M, Ventura-Clapier R (1998) Characterization of rat porin isoforms: cloning of a cardiac type-3 variant encoding an additional methionine at its putative N-terminal region. Biochim Biophys Acta 1399(1):47–50

    CAS  Google Scholar 

  • Anmann T, Varikmaa M, Timohhina N, Tepp K, Shevchuk I, Chekulayev V et al (2014) Formation of highly organized intracellular structure and energy metabolism in cardiac muscle cells during postnatal development of rat heart. Biochim Biophys Acta. doi:10.1016/j.bbabio.2014.03.015

    Google Scholar 

  • Appaix F, Kuznetsov AV, Usson Y, Kay L, Andrienko T, Olivares J et al (2003) Possible role of cytoskeleton in intracellular arrangement and regulation of mitochondria. Exp Physiol 88(1):175–190

    CAS  Google Scholar 

  • Avasthi P, Marshall WF (2012) Stages of ciliogenesis and regulation of ciliary length. Differentiation 83(2):S30–42. doi:10.1016/j.diff.2011.11.015

    CAS  Google Scholar 

  • Baines CP, Song CX, Zheng YT, Wang GW, Zhang J, Wang OL et al (2003) Protein kinase Cepsilon interacts with and inhibits the permeability transition pore in cardiac mitochondria. Circ Res 92(8):873–880. doi:10.1161/01.RES.0000069215.36389.8D

    CAS  Google Scholar 

  • Banerjee A (2002) Coordination of posttranslational modifications of bovine brain alpha-tubulin. Polyglycylation of delta2 tubulin. J Biol Chem 277(48):46140–46144. doi:10.1074/jbc.M208065200

    CAS  Google Scholar 

  • Belmadani S, Pous C, Ventura-Clapier R, Fischmeister R, Mery PF (2002) Post-translational modifications of cardiac tubulin during chronic heart failure in the rat. Mol Cell Biochem 237(1–2):39–46

    CAS  Google Scholar 

  • Belmadani S, Pous C, Fischmeister R, Mery PF (2004) Post-translational modifications of tubulin and microtubule stability in adult rat ventricular myocytes and immortalized HL-1 cardiomyocytes. Mol Cell Biochem 258(1–2):35–48

    CAS  Google Scholar 

  • Bernier-Valentin F, Rousset B (1982) Interaction of tubulin with rat liver mitochondria. J Biol Chem 257(12):7092–7099

    CAS  Google Scholar 

  • Bhogaraju S, Cajanek L, Fort C, Blisnick T, Weber K, Taschner M et al (2013) Molecular basis of tubulin transport within the cilium by IFT74 and IFT81. Science 341(6149):1009–1012. doi:10.1126/science.1240985

    CAS  Google Scholar 

  • Capetanaki Y, Bloch RJ, Kouloumenta A, Mavroidis M, Psarras S (2007) Muscle intermediate filaments and their links to membranes and membranous organelles. Exp Cell Res 313(10):2063–2076. doi:10.1016/j.yexcr.2007.03.033

    CAS  Google Scholar 

  • Carre M, Andre N, Carles G, Borghi H, Brichese L, Briand C et al (2002) Tubulin is an inherent component of mitochondrial membranes that interacts with the voltage-dependent anion channel. J Biol Chem 277(37):33664–33669. doi:10.1074/jbc.M203834200

    CAS  Google Scholar 

  • Cassimeris L, Silva VC, Miller E, Ton Q, Molnar C, Fong J (2012) Fueled by microtubules: does tubulin dimer/polymer partitioning regulate intracellular metabolism? Cytoskeleton (Hoboken) 69(3):133–143. doi:10.1002/cm.21008

    CAS  Google Scholar 

  • Clarke SJ, Khaliulin I, Das M, Parker JE, Heesom KJ, Halestrap AP (2008) Inhibition of mitochondrial permeability transition pore opening by ischemic preconditioning is probably mediated by reduction of oxidative stress rather than mitochondrial protein phosphorylation. Circ Res 102(9):1082–1090. doi:10.1161/CIRCRESAHA.107.167072

    CAS  Google Scholar 

  • Colombini M (2004) VDAC: the channel at the interface between mitochondria and the cytosol. Mol Cell Biochem 256–257(1–2):107–115

    Google Scholar 

  • Colombini M, Blachly-Dyson E, Forte M (1996) VDAC, a channel in the outer mitochondrial membrane. Ion Channels 4:169–202

    CAS  Google Scholar 

  • Das S, Wong R, Rajapakse N, Murphy E, Steenbergen C (2008) Glycogen synthase kinase 3 inhibition slows mitochondrial adenine nucleotide transport and regulates voltage-dependent anion channel phosphorylation. Circ Res 103(9):983–991. doi:10.1161/CIRCRESAHA.108.178970

    CAS  Google Scholar 

  • Das M, Chiron S, Verde F (2010) Microtubule-dependent spatial organization of mitochondria in fission yeast. Methods Cell Biol 97:203–221. doi:10.1016/S0091-679X(10)97012-X

    CAS  Google Scholar 

  • Dzeja PP, Terzic A (2003) Phosphotransfer networks and cellular energetics. J Exp Biol 206(Pt 12):2039–2047

    CAS  Google Scholar 

  • Dzeja PP, Zeleznikar RJ, Goldberg ND (1996) Suppression of creatine kinase-catalyzed phosphotransfer results in increased phosphoryl transfer by adenylate kinase in intact skeletal muscle. J Biol Chem 271(22):12847–12851

    CAS  Google Scholar 

  • Dzeja PP, Zeleznikar RJ, Goldberg ND (1998) Adenylate kinase: kinetic behavior in intact cells indicates it is integral to multiple cellular processes. Mol Cell Biochem 184(1–2):169–182

    CAS  Google Scholar 

  • Dzeja PP, Bortolon R, Perez-Terzic C, Holmuhamedov EL, Terzic A (2002) Energetic communication between mitochondria and nucleus directed by catalyzed phosphotransfer. Proc Natl Acad Sci U S A 99(15):10156–10161. doi:10.1073/pnas.152259999

    CAS  Google Scholar 

  • Dzeja PP, Terzic A, Wieringa B (2004) Phosphotransfer dynamics in skeletal muscle from creatine kinase gene-deleted mice. Mol Cell Biochem 256–257(1–2):13–27

    Google Scholar 

  • Dzeja PP, Hoyer K, Tian R, Zhang S, Nemutlu E, Spindler M et al (2011) Rearrangement of energetic and substrate utilization networks compensate for chronic myocardial creatine kinase deficiency. J Physiol. doi:10.1113/jphysiol.2011.212829

    Google Scholar 

  • Friedman JR, Webster BM, Mastronarde DN, Verhey KJ, Voeltz GK (2010) ER sliding dynamics and ER-mitochondrial contacts occur on acetylated microtubules. J Cell Biol 190(3):363–375. doi:10.1083/jcb.200911024

    CAS  Google Scholar 

  • Georgatos SD, Maison C (1996) Integration of intermediate filaments into cellular organelles. Int Rev Cytol 164:91–138

    CAS  Google Scholar 

  • Gershon ND, Porter KR, Trus BL (1985) The cytoplasmic matrix: its volume and surface area and the diffusion of molecules through it. Proc Natl Acad Sci U S A 82(15):5030–5034

    CAS  Google Scholar 

  • Guzun R, Timohhina N, Tepp K, Monge C, Kaambre T, Sikk P et al (2009) Regulation of respiration controlled by mitochondrial creatine kinase in permeabilized cardiac cells in situ. Importance of system level properties. Biochim Biophys Acta 1787(9):1089–1105. doi:10.1016/j.bbabio.2009.03.024

    CAS  Google Scholar 

  • Guzun R, Karu-Varikmaa M, Gonzalez-Granillo M, Kuznetsov AV, Michel L, Cottet-Rousselle C et al (2011) Mitochondria-cytoskeleton interaction: distribution of beta-tubulins in cardiomyocytes and HL-1 cells. Biochim Biophys Acta 1807(4):458–469. doi:10.1016/j.bbabio.2011.01.010

    CAS  Google Scholar 

  • Guzun R, Gonzalez-Granillo M, Karu-Varikmaa M, Grichine A, Usson Y, Kaambre T et al (2012) Regulation of respiration in muscle cells in vivo by VDAC through interaction with the cytoskeleton and MtCK within Mitochondrial Interactosome. Biochim Biophys Acta 1818(6):1545–1554. doi:10.1016/j.bbamem.2011.12.034

    CAS  Google Scholar 

  • Guzun R, Kaambre T, Bagur R, Grichine A, Usson Y, Varikmaa M et al (2014) Modular organization of cardiac energy metabolism: energy conversion, transfer and feedback regulation. Acta Physiol (Oxf). doi:10.1111/apha.12287

    Google Scholar 

  • Heggeness MH, Simon M, Singer SJ (1978) Association of mitochondria with microtubules in cultured cells. Proc Natl Acad Sci U S A 75(8):3863–3866

    CAS  Google Scholar 

  • Hein S, Kostin S, Heling A, Maeno Y, Schaper J (2000) The role of the cytoskeleton in heart failure. Cardiovasc Res 45(2):273–278

    CAS  Google Scholar 

  • Helfand BT, Mikami A, Vallee RB, Goldman RD (2002) A requirement for cytoplasmic dynein and dynactin in intermediate filament network assembly and organization. J Cell Biol 157(5):795–806. doi:10.1083/jcb.200202027

    CAS  Google Scholar 

  • Inclan YF, Nogales E (2001) Structural models for the self-assembly and microtubule interactions of gamma-, delta- and epsilon-tubulin. J Cell Sci 114(Pt 2):413–422

    CAS  Google Scholar 

  • Jacobus WE, Saks VA (1982) Creatine kinase of heart mitochondria: changes in its kinetic properties induced by coupling to oxidative phosphorylation. Arch Biochem Biophys 219(1):167–178

    CAS  Google Scholar 

  • Janke C, Bulinski JC (2011) Post-translational regulation of the microtubule cytoskeleton: mechanisms and functions. Nat Rev Mol Cell Biol 12(12):773–786. doi:10.1038/nrm3227

    CAS  Google Scholar 

  • Javadov S, Rajapurohitam V, Kilic A, Zeidan A, Choi A, Karmazyn M (2009) Anti-hypertrophic effect of NHE-1 inhibition involves GSK-3beta-dependent attenuation of mitochondrial dysfunction. J Mol Cell Cardiol 46(6):998–1007. doi:10.1016/j.yjmcc.2008.12.023

    CAS  Google Scholar 

  • Johnson LV, Walsh ML, Chen LB (1980) Localization of mitochondria in living cells with rhodamine 123. Proc Natl Acad Sci U S A 77(2):990–994

    CAS  Google Scholar 

  • Jolly AL, Kim H, Srinivasan D, Lakonishok M, Larson AG, Gelfand VI (2010) Kinesin-1 heavy chain mediates microtubule sliding to drive changes in cell shape. Proc Natl Acad Sci U S A 107(27):12151–12156. doi:10.1073/pnas.1004736107

    CAS  Google Scholar 

  • Kaambre T, Chekulayev V, Shevchuk I, Karu-Varikmaa M, Timohhina N, Tepp K et al (2012) Metabolic control analysis of cellular respiration in situ in intraoperational samples of human breast cancer. J Bioenerg Biomembr 44(5):539–558. doi:10.1007/s10863-012-9457-9

    CAS  Google Scholar 

  • Kaambre T, Chekulayev V, Shevchuk I, Tepp K, Timohhina N, Varikmaa M et al (2013) Metabolic control analysis of respiration in human cancer tissue. Front Physiol 4:151. doi:10.3389/fphys.2013.00151

    Google Scholar 

  • Kaasik A, Veksler V, Boehm E, Novotova M, Minajeva A, Ventura-Clapier R (2001) Energetic crosstalk between organelles: architectural integration of energy production and utilization. Circ Res 89(2):153–159

    CAS  Google Scholar 

  • Kaasik A, Safiulina D, Zharkovsky A, Veksler V (2007) Regulation of mitochondrial matrix volume. Am J Physiol Cell Physiol 292(1):C157–163. doi:10.1152/ajpcell.00272.2006

    CAS  Google Scholar 

  • Karu-Varikmaa M, Saaremäe M, Sikk P, Käämbre T, Metsis M, Saks V (2011) Regulation of mitochondrial respiration by different tubulin isoforms in vivo. Biophys J 100(3, Supplement 1):459a. doi:10.1016/j.bpj.2010.12.2702

    Google Scholar 

  • Kavallaris M (2010) Microtubules and resistance to tubulin-binding agents. Nat Rev Cancer 10(3):194–204. doi:10.1038/nrc2803

    CAS  Google Scholar 

  • Kedzior J, Masaoka M, Kurono C, Spodnik JH, Hallmann A, Majczak A et al (2004) Changes in physicochemical properties of microtubules lead to the formation of a single spherical structure of mitochondrial assembly enveloping nuclear chromatins. J Electron Microsc (Tokyo) 53(6):659–670

    CAS  Google Scholar 

  • Konieczny P, Fuchs P, Reipert S, Kunz WS, Zeold A, Fischer I et al (2008) Myofiber integrity depends on desmin network targeting to Z-disks and costameres via distinct plectin isoforms. J Cell Biol 181(4):667–681. doi:10.1083/jcb.200711058

    CAS  Google Scholar 

  • Kuznetsov AV, Margreiter R (2009) Heterogeneity of mitochondria and mitochondrial function within cells as another level of mitochondrial complexity. Int J Mol Sci 10(4):1911–1929. doi:10.3390/ijms10041911

    CAS  Google Scholar 

  • Kuznetsov AV, Tiivel T, Sikk P, Kaambre T, Kay L, Daneshrad Z et al (1996) Striking differences between the kinetics of regulation of respiration by ADP in slow-twitch and fast-twitch muscles in vivo. Eur J Biochem 241(3):909–915

    CAS  Google Scholar 

  • Kuznetsov AV, Hermann M, Saks V, Hengster P, Margreiter R (2009) The cell-type specificity of mitochondrial dynamics. Int J Biochem Cell Biol 41(10):1928–1939. doi:10.1016/j.biocel.2009.03.007

    CAS  Google Scholar 

  • Kuznetsov AV, Javadov S, Guzun R, Grimm M, Saks V (2013) Cytoskeleton and regulation of mitochondrial function: the role of beta-tubulin II. Front Physiol 4:82. doi:10.3389/fphys.2013.00082

    CAS  Google Scholar 

  • Leeson CR, Leeson TS (1969) Mitochondrial organization in skeletal muscle of the rat soft palate. J Anat 105(Pt 2):363–370

    CAS  Google Scholar 

  • Lemasters JJ, Holmuhamedov E (2006) Voltage-dependent anion channel (VDAC) as mitochondrial governator–thinking outside the box. Biochim Biophys Acta 1762(2):181–190. doi:10.1016/j.bbadis.2005.10.006

    CAS  Google Scholar 

  • Lowe J, Li H, Downing KH, Nogales E (2001) Refined structure of alpha beta-tubulin at 3.5 a resolution. J Mol Biol 313(5):1045–1057. doi:10.1006/jmbi.2001.5077

    CAS  Google Scholar 

  • Luduena RF (1993) Are tubulin isotypes functionally significant. Mol Biol Cell 4(5):445–457

    CAS  Google Scholar 

  • Luduena RF (1998) Multiple forms of tubulin: different gene products and covalent modifications. Int Rev Cytol 178:207–275

    CAS  Google Scholar 

  • Maack C, O’Rourke B (2007) Excitation-contraction coupling and mitochondrial energetics. Basic Res Cardiol 102(5):369–392. doi:10.1007/s00395-007-0666-z

    CAS  Google Scholar 

  • Maldonado EN, Lemasters JJ (2012) Warburg revisited: regulation of mitochondrial metabolism by voltage-dependent anion channels in cancer cells. J Pharmacol Exp Ther 342(3):637–641. doi:10.1124/jpet.112.192153

    CAS  Google Scholar 

  • Maldonado EN, Patnaik J, Mullins MR, Lemasters JJ (2010) Free tubulin modulates mitochondrial membrane potential in cancer cells. Cancer Res 70(24):10192–10201. doi:10.1158/0008-5472.CAN-10-2429

    CAS  Google Scholar 

  • Maldonado EN, Sheldon KL, DeHart DN, Patnaik J, Manevich Y, Townsend DM et al (2013) Voltage-dependent anion channels modulate mitochondrial metabolism in cancer cells: regulation by free tubulin and erastin. J Biol Chem 288(17):11920–11929. doi:10.1074/jbc.M112.433847

    CAS  Google Scholar 

  • Mathupala SP, Ko YH, Pedersen PL (2009) Hexokinase-2 bound to mitochondria: cancer’s stygian link to the “Warburg Effect” and a pivotal target for effective therapy. Semin Cancer Biol 19(1):17–24. doi:10.1016/j.semcancer.2008.11.006

    CAS  Google Scholar 

  • Milner DJ, Mavroidis M, Weisleder N, Capetanaki Y (2000) Desmin cytoskeleton linked to muscle mitochondrial distribution and respiratory function. J Cell Biol 150(6):1283–1298

    CAS  Google Scholar 

  • Nicholls D (2007) 1.1 bioenergetics. In: Lajtha A, Gibson GE, Dienel GA (eds) Handbook of neurochemistry and molecular neurobiology brain energetics. Integration of molecular and cellular processes. Springer, New York, pp 3–16

    Google Scholar 

  • Nogales E, Wang HW (2006) Structural intermediates in microtubule assembly and disassembly: how and why? Curr Opin Cell Biol 18(2):179–184. doi:10.1016/j.ceb.2006.02.009

    CAS  Google Scholar 

  • Nogales E, Downing KH, Amos LA, Lowe J (1998) Tubulin and FtsZ form a distinct family of GTPases. Nat Struct Biol 5(6):451–458

    CAS  Google Scholar 

  • Oddoux S, Zaal KJ, Tate V, Kenea A, Nandkeolyar SA, Reid E et al (2013) Microtubules that form the stationary lattice of muscle fibers are dynamic and nucleated at Golgi elements. J Cell Biol 203(2):205–213. doi:10.1083/jcb.201304063

    CAS  Google Scholar 

  • Ogata T, Yamasaki Y (1997) Ultra-high-resolution scanning electron microscopy of mitochondria and sarcoplasmic reticulum arrangement in human red, white, and intermediate muscle fibers. Anat Rec 248(2):214–223. doi:10.1002/(SICI)1097-0185(199706)248:2<214::AID-AR8>3.0.CO;2-S

    CAS  Google Scholar 

  • Palmer JW, Tandler B, Hoppel CL (1977) Biochemical properties of subsarcolemmal and interfibrillar mitochondria isolated from rat cardiac muscle. J Biol Chem 252(23):8731–8739

    CAS  Google Scholar 

  • Peters R (1986) Fluorescence microphotolysis to measure nucleocytoplasmic transport and intracellular mobility. Biochim Biophys Acta 864(3–4):305–359

    CAS  Google Scholar 

  • Piquereau J, Caffin F, Novotova M, Lemaire C, Veksler V, Garnier A et al (2013) Mitochondrial dynamics in the adult cardiomyocytes: which roles for a highly specialized cell? Front Physiol 4:102. doi:10.3389/fphys.2013.00102

    CAS  Google Scholar 

  • Prahlad V, Yoon M, Moir RD, Vale RD, Goldman RD (1998) Rapid movements of vimentin on microtubule tracks: kinesin-dependent assembly of intermediate filament networks. J Cell Biol 143(1):159–170

    CAS  Google Scholar 

  • Priel A, Tuszynski JA, Woolf NJ (2005) Transitions in microtubule C-termini conformations as a possible dendritic signaling phenomenon. Eur Biophys J 35(1):40–52. doi:10.1007/s00249-005-0003-0

    CAS  Google Scholar 

  • Pucar D, Dzeja PP, Bast P, Gumina RJ, Drahl C, Lim L et al (2004) Mapping hypoxia-induced bioenergetic rearrangements and metabolic signaling by 18O-assisted 31P NMR and 1H NMR spectroscopy. Mol Cell Biochem 256–257(1–2):281–289

    Google Scholar 

  • Reipert S, Steinbock F, Fischer I, Bittner RE, Zeold A, Wiche G (1999) Association of mitochondria with plectin and desmin intermediate filaments in striated muscle. Exp Cell Res 252(2):479–491. doi:10.1006/excr.1999.4626

    CAS  Google Scholar 

  • Robey RB, Hay N (2006) Mitochondrial hexokinases, novel mediators of the antiapoptotic effects of growth factors and Akt. Oncogene 25(34):4683–4696. doi:10.1038/sj.onc.1209595

    CAS  Google Scholar 

  • Rodriguez OC, Schaefer AW, Mandato CA, Forscher P, Bement WM, Waterman-Storer CM (2003) Conserved microtubule-actin interactions in cell movement and morphogenesis. Nat Cell Biol 5(7):599–609. doi:10.1038/ncb0703-599

    CAS  Google Scholar 

  • Rostovtseva T, Bezrukov S (2008) VDAC regulation: role of cytosolic proteins and mitochondrial lipids. J Bioenerg Biomembr 40(3):163–170. doi:10.1007/s10863-008-9145-y

    CAS  Google Scholar 

  • Rostovtseva TK, Bezrukov SM (2012) VDAC inhibition by tubulin and its physiological implications. Biochim Biophys Acta 1818(6):1526–1535. doi:10.1016/j.bbamem.2011.11.004

    CAS  Google Scholar 

  • Rostovtseva TK, Komarov A, Bezrukov SM, Colombini M (2002) VDAC channels differentiate between natural metabolites and synthetic molecules. J Membr Biol 187(2):147–156. doi:10.1007/s00232-001-0159-1

    CAS  Google Scholar 

  • Rostovtseva TK, Sheldon KL, Hassanzadeh E, Monge C, Saks V, Bezrukov SM et al (2008) Tubulin binding blocks mitochondrial voltage-dependent anion channel and regulates respiration. Proc Natl Acad Sci U S A 105(48):18746–18751. doi:10.1073/pnas.0806303105

    CAS  Google Scholar 

  • Sackett DL (2010a) Evolution and coevolution of tubulin's carboxy-terminal tails and mitochonsdria. In: Svensson OL (ed) Mitochondria: structure, functions and dysfunctions. Nova Science Publishers, USA, pp 441–470

    Google Scholar 

  • Sackett DL (2010) Evolution and Coevolution of Tubulin’s Carboxy-Terminal Tails and Mitochondria. Mitochondria: Struct, Funct Dysfunctions, 789–810

  • Sackett DL, Bhattacharyya B, Wolff J (1985) Tubulin subunit carboxyl termini determine polymerization efficiency. J Biol Chem 260(1):43–45

    CAS  Google Scholar 

  • Saetersdal T, Greve G, Dalen H (1990) Associations between beta-tubulin and mitochondria in adult isolated heart myocytes as shown by immunofluorescence and immunoelectron microscopy. Histochemistry 95(1):1–10

    CAS  Google Scholar 

  • Saks VA (2007) Molecular system bioenergetics: energy for life. Wiley-VCH, Weinheim

    Google Scholar 

  • Saks VA, Kuznetsov AV, Khuchua ZA, Vasilyeva EV, Belikova JO, Kesvatera T et al (1995) Control of cellular respiration in vivo by mitochondrial outer membrane and by creatine kinase. A new speculative hypothesis: possible involvement of mitochondrial-cytoskeleton interactions. J Mol Cell Cardiol 27(1):625–645

    CAS  Google Scholar 

  • Saks VA, Kuznetsov AV, Vendelin M, Guerrero K, Kay L, Seppet EK (2004) Functional coupling as a basic mechanism of feedback regulation of cardiac energy metabolism. Mol Cell Biochem 256–257(1–2):185–199

    Google Scholar 

  • Saks V, Dzeja PP, Guzun R, Aliev MK, Vendelin M, Terzic A et al (2007a) System analysis of cardiac energetics–excitation–contraction coupling: integration of mitochondrial respiration, phosphotransfer pathways, metabolic pacing, and substrate supply in the heart. In: Saks V (ed) Molecular system bioenergetics: energy for life. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 367–405

    Google Scholar 

  • Saks V, Kaambre T, Guzun R, Anmann T, Sikk P, Schlattner U et al (2007b) The creatine kinase phosphotransfer network: thermodynamic and kinetic considerations, the impact of the mitochondrial outer membrane and modelling approaches. Subcell Biochem 46:27–65

    Google Scholar 

  • Saks V, Kuznetsov AV, Gonzalez-Granillo M, Tepp K, Timohhina N, Varikmaa-Karu M, Käämbre T, Dos Santos P, Guzun R (2011) Intracellular energetic units regulate metabolism in the cardiac cells. JMCC. doi:10.1016/j.yjmcc.2011.07.015

    Google Scholar 

  • Saks V, Kuznetsov AV, Gonzalez-Granillo M, Tepp K, Timohhina N, Karu-Varikmaa M et al (2012) Intracellular energetic units regulate metabolism in cardiac cells. J Mol Cell Cardiol 52(2):419–436. doi:10.1016/j.yjmcc.2011.07.015

    CAS  Google Scholar 

  • Sato H, Nagai T, Kuppuswamy D, Narishige T, Koide M, Menick DR et al (1997) Microtubule stabilization in pressure overload cardiac hypertrophy. J Cell Biol 139(4):963–973

    CAS  Google Scholar 

  • Schroder R, Kunz WS, Rouan F, Pfendner E, Tolksdorf K, Kappes-Horn K et al (2002) Disorganization of the desmin cytoskeleton and mitochondrial dysfunction in plectin-related epidermolysis bullosa simplex with muscular dystrophy. J Neuropathol Exp Neurol 61(6):520–530

    CAS  Google Scholar 

  • Seppet EK, Kaambre T, Sikk P, Tiivel T, Vija H, Tonkonogi M et al (2001) Functional complexes of mitochondria with Ca,MgATPases of myofibrils and sarcoplasmic reticulum in muscle cells. Biochim Biophys Acta 1504(2–3):379–395

    CAS  Google Scholar 

  • Sheldon KL, Maldonado EN, Lemasters JJ, Rostovtseva TK, Bezrukov SM (2011) Phosphorylation of voltage-dependent anion channel by serine/threonine kinases governs its interaction with tubulin. PLoS One 6(10):e25539. doi:10.1371/journal.pone.0025539

    CAS  Google Scholar 

  • Skoufias DA, Wilson L (1998) Assembly and colchicine binding characteristics of tubulin with maximally tyrosinated and detyrosinated alpha-tubulins. Arch Biochem Biophys 351(1):115–122. doi:10.1006/abbi.1997.0510

    CAS  Google Scholar 

  • Song J, Midson C, Blachly-Dyson E, Forte M, Colombini M (1998) The sensor regions of VDAC are translocated from within the membrane to the surface during the gating processes. Biophys J 74(6):2926–2944. doi:10.1016/S0006-3495(98)78000-2

    CAS  Google Scholar 

  • Starling EH, Visscher MB (1927) The regulation of the energy output of the heart. J Physiol 62(3):243–261

    CAS  Google Scholar 

  • Sun CN, Dhalla NS, Olson RE (1969) Formation of gigantic mitochondria in hypoxic isolated perfused rat hearts. Experientia 25(7):763–764

    CAS  Google Scholar 

  • Svitkina TM, Verkhovsky AB, Borisy GG (1996) Plectin sidearms mediate interaction of intermediate filaments with microtubules and other components of the cytoskeleton. J Cell Biol 135(4):991–1007

    CAS  Google Scholar 

  • Tagawa H, Koide M, Sato H, Zile MR, Carabello BA, Cooper G 4th (1998) Cytoskeletal role in the transition from compensated to decompensated hypertrophy during adult canine left ventricular pressure overloading. Circ Res 82(7):751–761

    CAS  Google Scholar 

  • Takahashi M, Tsutsui H, Tagawa H, Igarashi-Saito K, Imanaka-Yoshida K, Takeshita A (1998) Microtubules are involved in early hypertrophic responses of myocardium during pressure overload. Am J Physiol 275(2 Pt 2):H341–348

    CAS  Google Scholar 

  • Tang HL, Lung HL, Wu KC, Le AH, Tang HM, Fung MC (2008) Vimentin supports mitochondrial morphology and organization. Biochem J 410(1):141–146. doi:10.1042/BJ20071072

    CAS  Google Scholar 

  • Tepp K, Timohhina N, Chekulayev V, Shevchuk I, Kaambre T, Saks V (2010) Metabolic control analysis of integrated energy metabolism in permeabilized cardiomyocytes. Biochimica et Biophysica Acta (BBA) - Bioenergetics 1797(Supplement 1):138–139. doi:10.1016/j.bbabio.2010.04.413

    Google Scholar 

  • Timohhina N, Guzun R, Tepp K, Monge C, Varikmaa M, Vija H et al (2009) Direct measurement of energy fluxes from mitochondria into cytoplasm in permeabilized cardiac cells in situ: some evidence for Mitochondrial Interactosome. J Bioenerg Biomembr 41(3):259–275. doi:10.1007/s10863-009-9224-8

    CAS  Google Scholar 

  • Tomanek RJ, Asmundson CR, Cooper RR, Barnard RJ (1973) Fine structure of fast-twitch and slow-twitch guinea pig muscle fibers. J Morphol 139(1):47–65. doi:10.1002/jmor.1051390104

    CAS  Google Scholar 

  • Tuszynski JA, Carpenter EJ, Huzil JT, Malinski W, Luchko T, Luduena RF (2006) The evolution of the structure of tubulin and its potential consequences for the role and function of microtubules in cells and embryos. Int J Dev Biol 50(2–3):341–358. doi:10.1387/ijdb.052063jt

    CAS  Google Scholar 

  • Ujwal R, Cascio D, Colletier JP, Faham S, Zhang J, Toro L et al (2008) The crystal structure of mouse VDAC1 at 2.3 A resolution reveals mechanistic insights into metabolite gating. Proc Natl Acad Sci U S A 105(46):17742–17747. doi:10.1073/pnas.0809634105

    CAS  Google Scholar 

  • Varikmaa M, Bagur R, Kaambre T, Grichine A, Timohhina N, Tepp K et al (2014) Role of mitochondria-cytoskeleton interactions in respiration regulation and mitochondrial organization in striated muscles. Biochim Biophys Acta 1837(2):232–245. doi:10.1016/j.bbabio.2013.10.011

    CAS  Google Scholar 

  • Vendelin M, Birkedal R (2008) Anisotropic diffusion of fluorescently labeled ATP in rat cardiomyocytes determined by raster image correlation spectroscopy. Am J Physiol Cell Physiol 295(5):C1302–1315. doi:10.1152/ajpcell.00313.2008

    CAS  Google Scholar 

  • Ventura-Clapier R, Kaasik A, Veksler V (2004) Structural and functional adaptations of striated muscles to CK deficiency. Mol Cell Biochem 256–257(1–2):29–41

    Google Scholar 

  • Wade RH, Garcia-Saez I, Kozielski F (2009) Structural variations in protein superfamilies: actin and tubulin. Mol Biotechnol 42(1):49–60. doi:10.1007/s12033-008-9128-6

    CAS  Google Scholar 

  • Wallimann T, Wyss M, Brdiczka D, Nicolay K, Eppenberger HM (1992) Intracellular compartmentation, structure and function of creatine kinase isoenzymes in tissues with high and fluctuating energy demands: the ‘phosphocreatine circuit’ for cellular energy homeostasis. Biochem J 281(Pt 1):21–40

    CAS  Google Scholar 

  • Webster DR (1997) Regulation of post-translationally modified microtubule populations during neonatal cardiac development. J Mol Cell Cardiol 29(6):1747–1761. doi:10.1006/jmcc.1997.0421

    CAS  Google Scholar 

  • Wiche G (1998) Role of plectin in cytoskeleton organization and dynamics. J Cell Sci 111(Pt 17):2477–2486

    CAS  Google Scholar 

  • Wilding JR, Joubert F, de Araujo C, Fortin D, Novotova M, Veksler V et al (2006) Altered energy transfer from mitochondria to sarcoplasmic reticulum after cytoarchitectural perturbations in mice hearts. J Physiol 575(Pt 1):191–200. doi:10.1113/jphysiol.2006.114116

    CAS  Google Scholar 

  • Williamson JR, Ford C, Illingworth J, Safer B (1976) Coordination of citric acid cycle activity with electron transport flux. Circ Res 38(5 Suppl 1):I39–51

    CAS  Google Scholar 

  • Winter L, Abrahamsberg C, Wiche G (2008) Plectin isoform 1b mediates mitochondrion-intermediate filament network linkage and controls organelle shape. J Cell Biol 181(6):903–911. doi:10.1083/jcb.200710151

    CAS  Google Scholar 

  • Yaffe MP, Harata D, Verde F, Eddison M, Toda T, Nurse P (1996) Microtubules mediate mitochondrial distribution in fission yeast. Proc Natl Acad Sci U S A 93(21):11664–11668

    CAS  Google Scholar 

  • Yoon M, Moir RD, Prahlad V, Goldman RD (1998) Motile properties of vimentin intermediate filament networks in living cells. J Cell Biol 143(1):147–157

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Estonian Ministry of Education and Research through the institutional research funding IUT (IUT23-1).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kersti Tepp or Tuuli Kaambre.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tepp, K., Mado, K., Varikmaa, M. et al. The role of tubulin in the mitochondrial metabolism and arrangement in muscle cells. J Bioenerg Biomembr 46, 421–434 (2014). https://doi.org/10.1007/s10863-014-9579-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10863-014-9579-3

Keywords

Navigation