Skip to main content
Log in

Fluorine-19 labeling of the tryptophan residues in the G protein-coupled receptor NK1R using the 5-fluoroindole precursor in Pichia pastoris expression

  • Article
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

In NMR spectroscopy of biomolecular systems, the use of fluorine-19 probes benefits from a clean background and high sensitivity. Therefore, 19F-labeling procedures are of wide-spread interest. Here, we use 5-fluoroindole as a precursor for cost-effective residue-specific introduction of 5-fluorotryptophan (5F-Trp) into G protein-coupled receptors (GPCRs) expressed in Pichia pastoris. The method was successfully implemented with the neurokinin 1 receptor (NK1R). The 19F-NMR spectra of 5F-Trp-labeled NK1R showed one well-separated high field-shifted resonance, which was assigned by mutational studies to the “toggle switch tryptophan”. Residue-selective labeling thus enables site-specific investigations of this functionally important residue. The method described here is inexpensive, requires minimal genetic manipulation and can be expected to be applicable for yeast expression of GPCRs at large.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

References

  • Abiko LA, Rogowski M, Gautier A, Schertler G, Grzesiek S (2021) Efficient production of a functional G protein-coupled receptor in E. Coli for structural studies. J Biomol NMR 75:25–38

    Article  Google Scholar 

  • Alekseev TA, Dergousova NI, Shibanova ED, Azeeva EA, Kriukova EV, Balashova TA, Dubovskii PV, Aesen’ev AS, Tsetlin VI (2003) 5-fluoro-tryptophan-containing N-terminal domain of the α-subunit of the Torpedo californica acetylcholine receptor: preparation in Escherichia coli and 19F NMR study. Bioorg Khim 29:384–390

    Google Scholar 

  • Anderluh G, Razpotnik A, Podlesek Z, Maček P, Separovic F, Norton RS (2005) Interaction of the eukaryotic pore-forming cytolysin equinatoxin II with model membranes: 19F NMR studies. J Mol Biol 347:27–39

    Article  Google Scholar 

  • Bai J, Wang J, Ravula T, Im SC, Anantharamaiah GM, Waskell L, Ramamoorthy A (2020) Expression, purification, and functional reconstitution of 19F-labeled cytochrome b5 in peptide nanodiscs for NMR studies. Biochim Biophys Acta Biomembr 1862:183194

    Article  Google Scholar 

  • Ballesteros JA, Weinstein H (1995) Integrated methods for the construction of three-dimensional models and computational probing of structure–function relations in G protein-coupled receptors. Methods Neurosci 25:366–428

    Article  Google Scholar 

  • Bernstein H, Schneider WG, Pople JA (1956) The proton magnetic resonance spectra of conjugated aromatic hydrocarbons. Proc R Soc Lond 236:515–528

    ADS  Google Scholar 

  • Chen S, Lu M, Liu D, Yang L, Yi C, Ma L, Zhang H, Liu Q, Frimurer TM, Wang MW, Schwartz TW, Stevens RC, Wu B, Wüthrich K, Zhao Q (2019) Human substance P receptor binding mode of the antagonist drug aprepitant by NMR and crystallography. Nat Commun 10:638

    Article  ADS  Google Scholar 

  • Crowley PB, Kyne C, Monteith WB (2012) Simple and inexpensive incorporation of 19F-Tryptophan for protein NMR spectroscopy. Chem Commun 48:10681–10683

    Article  Google Scholar 

  • Danielson MA, Falke JJ (1996) Use of 19F NMR to probe protein structure and conformational changes. Annu Rev Biophys Biomol Struct 25:163–195

    Article  Google Scholar 

  • Didenko T, Liu JJ, Horst R, Stevens RC, Wüthrich K (2013) Fluorine-19 NMR of integral membrane proteins illustrated with studies of GPCRs. Curr Opin Struct Biol 23:740–747

    Article  Google Scholar 

  • Drazic A, Myklebust LM, Ree R, Arnesen T (2016) The world of protein acetylation. Biochim Biophys Acta 1864:1372–1401

    Article  Google Scholar 

  • Eddy MT, Lee MY, Gao ZG, White KL, Didenko T, Horst R, Audet M, Stanczak P, McClary KM, Han GW, Jacobson KA, Stevens RC, Wüthrich K (2018) Allosteric coupling of drug binding and intracellular signaling in the A2A adenosine receptor. Cell 172:68–80

    Article  Google Scholar 

  • Frieden C, Hoeltzli SD, Bann JG (2004) The preparation of 19F-labeled proteins for NMR studies. Methods Enzymol 380:400–415

    Article  Google Scholar 

  • Ge H, Wang H, Pan B, Feng D, Guo C, Yang L, Liu D, Wüthrich K (2022) G protein-coupled receptor (GPCR) reconstitution and labeling for solution nuclear magnetic resonance (NMR) studies of the structural basis of transmembrane signaling. Molecules 27:2658

    Article  Google Scholar 

  • Gerig JT (1994) Fluorine NMR of proteins. Prog Nucl Magn Reson Spectrosc 26:293–370

    Article  Google Scholar 

  • Gronenborn AM (2022) Small, but powerful and attractive: 19F in biomolecular NMR. Structure 30:6–14

    Article  Google Scholar 

  • Harris JA, Faust B, Gondin AB, Dämgen MA, Suomivuori CM, Veldhuis NA, Cheng Y, Dror RO, Thal DM, Manglik A (2022) Selective G protein signaling driven by substance P–neurokinin receptor dynamics. Nat Chem Biol 18:109–115

    Article  Google Scholar 

  • Johnson CE Jr., Bovey FA (1958) Calculation of nuclear magnetic resonance spectra of aromatic hydrocarbons. J Chem Phys 29:1012–1014

    Article  ADS  Google Scholar 

  • Julius D, Brake A, Blair L, Kunisawa R, Thorner J (1984) Isolation of the putative structural gene for the lysine-arginine-cleaving endopeptidase required for processing of yeast prepro-α- factor. Cell 37:1075–1089

    Article  Google Scholar 

  • Katritch V, Cherezov V, Stevens RC (2013) Structure–function of the G protein-coupled receptor superfamily. Annu Rev Pharmacol Toxicol 53:531–556

    Article  Google Scholar 

  • Kim H-W, Perez JA, Ferguson SJ, Campbell ID (1990) The specific incorporation of labelled aromatic amino acids into proteins through growth of bacteria in the presence of glyphosate: application to fluorotryptophan labelling to the H+-ATPase of Escherichia coli and NMR studies. FEBS Lett 272:34–36

    Article  Google Scholar 

  • Klein-Seetharaman J, Getmanova EV, Loewen MC, Reeves PJ, Khorana HG (1999) NMR spectroscopy in studies of light-induced structural changes in mammalian rhodopsin: applicability of solution 19F NMR. Proc Natl Acad Sci USA 96:13744–13749

    Article  ADS  Google Scholar 

  • Koradi R, Billeter M, Wüthrich K (1996) MOLMOL: a program for display and analysis of macromolecular structures. J Mol Graph 14:51–55

    Article  Google Scholar 

  • Krempl C, Sprangers R (2023) Assessing the applicability of 19F labeled tryptophan residues to quantify protein dynamics. J Biomol NMR 77:55–67

    Article  Google Scholar 

  • Liu D, Wüthrich K (2016) Ring current shifts in 19F-NMR of membrane proteins. J Biomol NMR 65:1–5

    Article  Google Scholar 

  • Luck LA, Falke JJ (1991) 19F NMR studies of the D-galactose chemosensory receptor. 1. Sugar binding yields a global structural change. Biochemistry 30:4248–4256

    Article  Google Scholar 

  • Mohamadi M, Goricanec D, Wagner G, Hagn F (2023) NMR sample optimization and backbone assignment of a stabilized neurotensin receptor. J Struct Biol 215:107970

    Article  Google Scholar 

  • Pan B, Liu D, Yang L, Wüthrich K (2022) GPCR large-amplitude dynamics by 19F-NMR of aprepitant bound to the neurokinin 1 receptor. Proc Natl Acad Sci USA 119:e2122682119

    Article  Google Scholar 

  • Perkins SJ, Wüthrich K (1979) Ring current effects in the conformation dependent NMR chemical shifts of aliphatic protons in the basic pancreatic trypsin inhibitor. Biochim Biophys Acta 576:409–423

    Article  Google Scholar 

  • Pervushin K, Riek R, Wider G, Wüthrich K (1997) Attenuated T2 relaxation by mutual cancellation of dipole–dipole coupling and chemical shift anisotropy indicates an avenue to NMR structures of very large biological macromolecules in solution. Proc Natl Acad Sci USA 94:12366–12371

    Article  ADS  Google Scholar 

  • Phillips RS (2004) Synthetic applications of tryptophan synthase. Tetrahedron: Asymmetry 15:2787–2792

    Article  Google Scholar 

  • Picard LP, Prosser RS (2021) Advances in the study of GPCRs by 19F NMR. Curr Opin Struct Biol 69:169–176

    Article  Google Scholar 

  • Schöppe J, Ehrenmann J, Klenk C, Rucktooa P, Schütz M, Doré AS, Plückthun A (2019) Crystal structures of the human neurokinin 1 receptor in complex with clinically used antagonists. Nat Commun 10:17

    Article  ADS  Google Scholar 

  • Schuster M, Deluigi M, Pantić M, Vacca S, Baumann C, Scott DJ, Plückthun A, Zerbe O (2020) Optimizing the α1B-adrenergic receptor for solution NMR studies. Biochim Biophys Acta Biomembr 1862:183354

    Article  Google Scholar 

  • Sykes BD, Hull WE (1978) Fluorine nuclear magnetic resonance studies of proteins. Methods Enzymol 49:270–295

    Article  Google Scholar 

  • Thom C, Ehrenmann J, Vacca S, Waltenspuhl Y, Schöppe J, Medalia O, Plückthun A (2021) Structures of neurokinin 1 receptor in complex with Gq and Gs proteins reveal substance P binding mode and unique activation features. Sci Adv 7:eabk2872

    Article  ADS  Google Scholar 

  • Wang X, Liu D, Shen L, Li F, Li Y, Yang L, Xu T, Tao H, Yao D, Wu L, Hirata K, Bohn LM, Makriyannis A, Liu X, Hua T, Liu ZJ, Wang J (2021) A genetically encoded F-19 NMR probe reveals the allosteric modulation mechanism of cannabinoid receptor 1. J Am Chem Soc 143:16320–16325

    Article  Google Scholar 

  • Ye L, Wang X, McFarland A, Madsen JJ (2022) ) 19F NMR: a promising tool for dynamic conformational studies of G protein-coupled receptors. Structure 30:1372–1384

    Article  Google Scholar 

  • Yin J, Chapman K, Clark LD, Shao Z, Borek D, Xu Q, Wang J, Rosenbaum DM (2018) Crystal structure of the human NK1 tachykinin receptor. Proc Natl Acad Sci USA 115:13264–13269

    Article  ADS  Google Scholar 

Download references

Acknowledgements

D.L. acknowledges funding from the National Natural Science Foundation of China (No. 31971153). K.W. is the Cecil H. and Ida M. Green Professor of Structural Biology at Scripps Research. We acknowledge the use of the NMR Core Facilities of the iHuman Institute and help with MS data collection by Dr. Jiakang Chen from the Shanghai Institute for Advanced Immunochemical Studies at ShanghaiTech University.

Author information

Authors and Affiliations

Authors

Contributions

K.W. and D.L. supervised the project. B.P. carried out protein production and recorded NMR spectra. B.P., C.G., D.L. and K.W. analyzed the data and prepared the manuscript.

Corresponding author

Correspondence to Kurt Wüthrich.

Ethics declarations

Conflicts of interest

The authors note no conflicts of interest concerning the research presented here.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, B., Guo, C., Liu, D. et al. Fluorine-19 labeling of the tryptophan residues in the G protein-coupled receptor NK1R using the 5-fluoroindole precursor in Pichia pastoris expression. J Biomol NMR (2024). https://doi.org/10.1007/s10858-024-00439-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10858-024-00439-6

Keywords

Navigation