Skip to main content
Log in

Solution structure of the N-terminal domain of the Staphylococcus aureus hibernation promoting factor

  • Article
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

Staphylococcus aureus hibernation promoting factor (SaHPF) is a 22,2 kDa protein which plays a crucial role in 100S Staphylococcus aureus ribosome formation during stress. SaHPF consists of N-terminal domain (NTD) that prevents proteins synthesis by binding to the 30S subunit at the P- and A-sites, connected through a flexible linker with a C-terminal domain (CTD) that keeps ribosomes in 100S form via homodimerization. Recently obtained 100S ribosome structure of S. aureus by cryo-EM shown that SaHPF-NTD bound to the ribosome active sites, however due to the absence of SaHPF-NTD structure it was modeled by homology with the E. coli hibernation factors HPF and YfiA. In present paper we have determined the solution structure of SaHPF-NTD by high-resolution NMR spectroscopy which allows us to increase structural knowledge about HPF structure from S. aureus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Structural data are available in the Protein Data Bank/BioMagResBank databases under the accession number 6QBZ / 27085.

References

  • Akanuma G et al (2016) Ribosome dimerization is essential for the efficient regrowth of Bacillus subtilis. Microbiology 162:448–458

    Article  Google Scholar 

  • Akiyama T et al (2017) Resuscitation of Pseudomonas aeruginosa from dormancy requires hibernation promoting factor (PA4463) for ribosome preservation. Proc Natl Acad Sci USA 114:3204–3209

    Article  Google Scholar 

  • Bardiaux B, Malliavin T, Nilges M (2012) ARIA for solution and solid-state NMR. Methods Mol Biol 831:453–483

    Article  Google Scholar 

  • Basu A, Yap MNF (2016) Ribosome hibernation factor promotes Staphylococcal survival and differentially represses translation. Nucleic Acids Res 44:4881–4893

    Article  Google Scholar 

  • Beckert B et al (2017) Structure of the Bacillus subtilis hibernating 100S ribosome reveals the basis for 70S dimerization. EMBO J 36:2061–2072

    Article  Google Scholar 

  • Bieri P, Leibundgut M, Saurer M, Boehringer D, Ban N (2017) The complete structure of the chloroplast 70S ribosome in complex with translation factor pY. EMBO J 36:475–486

    Article  Google Scholar 

  • Brunger AT et al (1998) Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr D Biol Crystallogr 54:905–921

    Article  Google Scholar 

  • De Bari H, Berry EA (2013) Structure of Vibrio cholerae ribosome hibernation promoting factor. Acta Crystallogr Sect F 69:228–236

    Article  Google Scholar 

  • de las Heras A, Cain RJ, Bielecka MK, Vazquez-Boland JA (2011) Regulation of Listeria virulence: PrfA master and commander. Curr Opin Microbiol 14:118–127

    Article  Google Scholar 

  • Izutsu K et al (2001) Escherichia coli ribosome-associated protein SRA, whose copy number increases during stationary phase. J Bacteriol 183:2765–2773

    Article  Google Scholar 

  • Kato T et al (2010) Structure of the 100S ribosome in the hibernation stage revealed by electron cryomicroscopy. Structure 18:719–724

    Article  Google Scholar 

  • Khusainov I et al (2017a) Structures and dynamics of hibernating ribosomes from Staphylococcus aureus mediated by intermolecular interactions of HPF. EMBO J 36:2073–2087

    Article  Google Scholar 

  • Khusainov I et al (2017b) Structure of the 70S ribosome from human pathogen Staphylococcus aureus. Nucleic Acids Res 45:1026

    Article  Google Scholar 

  • Laskowski RA, Rullmannn JA, MacArthur MW, Kaptein R, Thornton JM (1996) AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. J Biomol NMR 8:477–486

    Article  Google Scholar 

  • Maki Y, Yoshida H, Wada A (2000) Two proteins, YfiA and YhbH, associated with resting ribosomes in stationary phase Escherichia coli. Genes Cells 5:965–974

    Article  Google Scholar 

  • McKay SL, Portnoy DA (2015) Ribosome hibernation facilitates tolerance of stationary-phase bacteria to aminoglycosides. Antimicrob Agents Chemother 59:6992–6999

    Article  Google Scholar 

  • Pettersen EF et al (2004) UCSF Chimera–a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612

    Article  Google Scholar 

  • Polikanov YS, Blaha GM, Steitz TA (2012) How hibernation factors RMF, HPF, and YfiA turn off protein synthesis. Science 336:915–918

    Article  ADS  Google Scholar 

  • Puri P et al (2014) Lactococcus lactis YfiA is necessary and sufficient for ribosome dimerization. Mol Microbiol 91:394–407

    Article  Google Scholar 

  • Russell JB, Cook GM (1995) Energetics of bacterial growth: balance of anabolic and catabolic reactions. Microbiol Rev 59:48–62

    Google Scholar 

  • Sato A et al (2009) Solution structure of the E. coli ribosome hibernation promoting factor HPF: implications for the relationship between structure and function. Biochem Biophys Res Commun 389:580–585

    Article  Google Scholar 

  • Sharma MR et al (2010) PSRP1 is not a ribosomal protein, but a ribosome-binding factor that is recycled by the ribosome-recycling factor (RRF) and elongation factor G (EF-G). J Biol Chem 285:4006–4014

    Article  Google Scholar 

  • Tagami K et al (2012) Expression of a small (p)ppGpp synthetase, YwaC, in the (p)ppGpp(0) mutant of Bacillus subtilis triggers YvyD-dependent dimerization of ribosome. Microbiologyopen 1:115–134

    Article  Google Scholar 

  • Ueta M et al (2008) Role of HPF (hibernation promoting factor) in translational activity in Escherichia coli. J Biochem 143:425–433

    Article  Google Scholar 

  • Ueta M, Wada C, Wada A (2010) Formation of 100S ribosomes in Staphylococcus aureus by the hibernation promoting factor homolog SaHPF. Genes Cells 15:43–58

    Article  Google Scholar 

  • Ueta M et al (2013) Conservation of two distinct types of 100S ribosome in bacteria. Genes Cells 18:554–574

    Article  Google Scholar 

  • Usachev KS, Ayupov RK, Validov SZ, Khusainov IS, Yusupov MM (2018) NMR assignments of the N-terminal domain of Staphylococcus aureus hibernation promoting factor (SaHPF). Biomol NMR Assign 12:85–89

    Article  Google Scholar 

  • Vila-Sanjurjo A, Schuwirth BS, Hau CW, Cate JH (2004) Structural basis for the control of translation initiation during stress. Nat Struct Mol Biol 11:1054–1059

    Article  Google Scholar 

  • Yoshida H, Wada A (2014) The 100S ribosome: ribosomal hibernation induced by stress. Wiley Interdiscip Rev RNA 5:723–732

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Russian Science Foundation (Grant 16-14-10014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marat M. Yusupov.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Usachev, K.S., Validov, S.Z., Khusainov, I.S. et al. Solution structure of the N-terminal domain of the Staphylococcus aureus hibernation promoting factor. J Biomol NMR 73, 223–227 (2019). https://doi.org/10.1007/s10858-019-00254-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-019-00254-4

Keywords

Navigation