Skip to main content
Log in

Rapid measurement of long-range distances in proteins by multidimensional 13C–19F REDOR NMR under fast magic-angle spinning

  • Article
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

The ability to simultaneously measure many long-range distances is critical to efficient and accurate determination of protein structures by solid-state NMR (SSNMR). So far, the most common distance constraints for proteins are 13C–15N distances, which are usually measured using the rotational-echo double-resonance (REDOR) technique. However, these measurements are restricted to distances of up to ~ 5 Å due to the low gyromagnetic ratios of 15N and 13C. Here we present a robust 2D 13C–19F REDOR experiment to measure multiple distances to ~ 10 Å. The technique targets proteins that contain a small number of recombinantly or synthetically incorporated fluorines. The 13C–19F REDOR sequence is combined with 2D 13C–13C correlation to resolve multiple distances in highly 13C-labeled proteins. We show that, at the high magnetic fields which are important for obtaining well resolved 13C spectra, the deleterious effect of the large 19F chemical shift anisotropy for REDOR is ameliorated by fast magic-angle spinning and is further taken into account in numerical simulations. We demonstrate this 2D 13C–13C resolved 13C–19F REDOR technique on 13C, 15N-labeled GB1. A 5-19F-Trp tagged GB1 sample shows the extraction of distances to a single fluorine atom, while a 3-19F-Tyr labeled GB1 sample allows us to evaluate the effects of multi-spin coupling and statistical 19F labeling on distance measurement. Finally, we apply this 2D REDOR experiment to membrane-bound influenza B M2 transmembrane peptide, and show that the distance between the proton-selective histidine residue and the gating tryptophan residue differs from the distances in the solution NMR structure of detergent-bound BM2. This 2D 13C–19F REDOR technique should facilitate SSNMR-based protein structure determination by increasing the measurable distances to the ~ 10 Å range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Bak M, Nielsen NC (1997) REPULSION, a novel approach to efficient powder averaging in solid-state NMR. J Magn Reson 125:132–139

    Article  ADS  Google Scholar 

  • Bak M, Rasmussen JT, Nielsen NC (2000) SIMPSON: a general simulation program for solid-state NMR spectroscopy. J Magn Reson 147:296–330

    Article  ADS  Google Scholar 

  • Bennett AE, Rienstra CM, Auger M, Lakshmi KV, Griffin RG (1995) Heteronuclear decoupling in rotating solids. J Chem Phys 103:6951–6958

    Article  ADS  Google Scholar 

  • Bennett AE, Rienstra CM, Griffiths JM, Zhen WG, Lansbury PT, Griffin RG (1998) Homonuclear radio frequency-driven recoupling in rotating solids. J Chem Phys 108:9463–9479

    Article  ADS  Google Scholar 

  • Cady SD, Wang T, Hong M (2011) Membrane-dependent effects of a cytoplasmic helix on the structure and drug binding of the influenza virus M2 protein. J Am Chem Soc 133:11572–11579

    Article  Google Scholar 

  • Cegelski L (2013) REDOR NMR for drug discovery. Bioorg Med Chem Lett 23:5767–5775

    Article  Google Scholar 

  • Dürr HN, Grage SL, Witter R, Ulrich AS (2008) Solid state 19F NMR parameters of fluorine-labeled amino acids. Part I: aromatic substituents. J Magn Reson 191:7–15

    Article  ADS  Google Scholar 

  • Franks WT et al (2005) Magic-angle spinning solid-state NMR spectroscopy of the beta 1 immunoglobulin binding domain of protein G (GB1): N-15 and C-13 chemical shift assignments and conformational analysis. J Am Chem Soc 127:12291–12305

    Article  Google Scholar 

  • Ghosh M, Rienstra CM (2017) H-1-detected REDOR with fast magic-angle spinning of a deuterated protein. J Phys Chem B 121:8503–8511

    Article  Google Scholar 

  • Goetz JM et al (1999) Investigation of the binding of fluorolumazines to the 1-MDa capsid of lumazine synthase by 15N{19F} REDOR NMR. J Am Chem Soc 121:7500–7508

    Article  Google Scholar 

  • Graesser DT, Wylie BJ, Nieuwkoop AJ, Franks WT, Rienstra CM (2007) Long-range F-19-N-15 distance measurements in highly-C-13, N-15-enriched solid proteins with F-19-dephased REDOR shift (FRESH) spectroscopy. Magn Reson Chem 45:S129–S134

    Article  Google Scholar 

  • Gullion T, Schaefer J (1989) Rotational-echo double-resonance NMR. J Magn Reson 81:196–200

    ADS  Google Scholar 

  • Hong M, Griffin RG (1998) Resonance assignment for solid peptides by dipolar-mediated 13C/15N correlation solid-state NMR. J Am Chem Soc 120:7113–7114

    Article  Google Scholar 

  • Hong M, Schmidt-Rohr K (2013) Magic-angle-spinning NMR techniques for measuring long-range distances in biological macromolecules. Acc Chem Res 46:2154–2163

    Article  Google Scholar 

  • Jaroniec CP, Tounge BA, Rienstra CM, Herzfeld J, Griffin RG (2000) Recoupling of heteronuclear dipolar interactions with rotational-echo double-resonance at high magic-angle spinning frequencies. J Magn Reson 146:132–139

    Article  ADS  Google Scholar 

  • Kim SJ, Cegelski L, Preobrazhenskaya M, Schaefer J (2006) Structures of Staphylococcus aureus cell-wall complexes with vancomycin, eremomycin, and chloroeremomycin derivatives by 13C{19F} and 15N{19F} rotational-echo double resonance. Biochemistry 45:5235–5250

    Article  Google Scholar 

  • Lehninger AL, Nelson DL, Cox MM (1993) Principles of biochemistry, 2nd edn. Worth Publishers, New York

    Google Scholar 

  • Luo W, Cady SD, Hong M (2009) Immobilization of the influenza A M2 transmembrane peptide in virus-envelope mimetic lipid membranes: a solid-state NMR investigation. Biochemistry 48:6361–6368

    Article  Google Scholar 

  • Mani R, Cady SD, Tang M, Waring AJ, Lehrer RI, Hong M (2006a) Membrane-dependent oligomeric structure and pore formation of a beta-hairpin antimicrobial peptide in lipid bilayers from solid-state NMR. Proc Natl Acad Sci USA 103:16242–16247

    Article  ADS  Google Scholar 

  • Mani R, Tang M, Wu X, Buffy JJ, Waring AJ, Sherman MA, Hong M (2006b) Membrane-bound dimer structure of a β-hairpin antimicrobial peptide from rotational-echo double-resonance solid-state NMR. Biochemistry 45:8341–8349

    Article  Google Scholar 

  • Pan Y, Gullion T, Schaefer J (1990) Determination of C-N internuclear distances by rotational-echo double-resonance NMR of solids. J Magn Reson 90:330

    ADS  Google Scholar 

  • Ravichandran KR, Liang L, Stubbe J, Tommos C (2013) Formal reduction potential of 3,5-difluorotyrosine in a structured protein: insight into multistep radical transfer. Biochemistry 52:8907–8915

    Article  Google Scholar 

  • Rienstra CM et al (2002) De novo determination of peptide structure with solid-state magic-angle spinning NMR spectroscopy. Proc Natl Acad Sci USA 99:10260–10265

    Article  ADS  Google Scholar 

  • Roos M, Wang T, Shcherbakov AA, Hong M (2018) Fast magic-angle-spinning F-19 spin exchange NMR for determining nanometer distances in proteins and pharmaceutical compounds. J Phys Chem B 122:2900–2911

    Article  Google Scholar 

  • Sack II, Goldbourt A, Vega S, Buntkowsky G (1999) Deuterium REDOR: principles and applications for distance measurements. J Magn Reson 138:54–65

    Article  ADS  Google Scholar 

  • Sinha N, Hong M (2003) X-1H rotational-echo double-resonance NMR for torsion angle determination of peptides. Chem Phys Lett 380:742–748

    Article  ADS  Google Scholar 

  • Sinha N, Schmidt-Rohr K, Hong M (2004) Compensation for pulse imperfections in rotational-echo double-resonance NMR by composite pulses and EXORCYCLE. J Magn Reson 168:358–365

    Article  ADS  Google Scholar 

  • Tang M, Waring AJ, Hong M (2007) Phosphate-mediated arginine insertion into lipid membranes and pore formation by a cationic membrane peptide from solid-state NMR. J Am Chem Soc 129:11438–11446

    Article  Google Scholar 

  • Wang J, Pielak RM, McClintock MA, Chou JJ (2009) Solution structure and functional analysis of the influenza B proton channel. Nat Struct Mol Biol 16:1267–1271

    Article  Google Scholar 

  • Wi S, Sinha N, Hong M (2004) Long-range 1H-19F distance measurement in peptides by solid-state NMR. J Am Chem Soc 126:12754–12755

    Article  Google Scholar 

  • Williams JK, Tietze D, Lee M, Wang J, Hong M (2016) Solid-state NMR investigation of the conformation, proton conduction, and hydration of the influenza B virus M2 transmembrane proton channel. J Am Chem Soc 138:8143–8155

    Article  Google Scholar 

  • Williams JK, Shcherbakov AA, Wang J, Hong M (2017) Protonation equilibria and pore-opening structure of the dual-histidine influenza B virus M2 transmembrane proton channel from solid-state NMR. J Biol Chem 292:17876–17884

    Article  Google Scholar 

  • Wylie BJ, Sperling LJ, Nieuwkoop AJ, Franks WT, Oldfield E, Rienstra CM (2011) Ultrahigh resolution protein structures using NMR chemical shift tensors. Proc Natl Acad Sci USA 108:16974–16979

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Matthias Roos for useful discussions. This work is supported by National Institutes of Health Grants GM066976 and GM088204 to M.H.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mei Hong.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 2104 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shcherbakov, A.A., Hong, M. Rapid measurement of long-range distances in proteins by multidimensional 13C–19F REDOR NMR under fast magic-angle spinning. J Biomol NMR 71, 31–43 (2018). https://doi.org/10.1007/s10858-018-0187-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-018-0187-0

Keywords

Navigation