Skip to main content
Log in

Gd3+-chelated lipid accelerates solid-state NMR spectroscopy of seven-transmembrane proteins

  • Article
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

Solid-state NMR (SSNMR) is an attractive technique for studying large membrane proteins in membrane-mimetic environments. However, SSNMR experiments often suffer from low efficiency, due to the inherent low sensitivity and the long recycle delays needed to recover the magnetization. Here we demonstrate that the incorporation of a small amount of a Gd3+-chelated lipid, Gd3+-DMPE-DTPA, into proteoliposomes greatly shortens the spin–lattice relaxation time (1H-T 1) of lipid-reconstituted membrane proteins and accelerates the data collection. This effect has been evaluated on a 30 kDa, seven-transmembrane protein, Leptosphaeria rhodopsin. With the Gd3+-chelated lipid, we can perform 2D SSNMR experiments 3 times faster than by diamagnetic control. By combining this paramagnetic relaxation-assisted data collection with non-uniform sampling, the 3D experimental times are reduced eightfold with respect to traditional 3D experiments on diamagnetic samples. A comparison between the paramagnetic relaxation enhancement (PRE) effects of Cu2+- and Gd3+-chelated lipids indicates the much higher relaxivity of the latter. Hence, a tenfold lower concentration is needed for Gd3+-chelated lipids to achieve comparable PRE effects to Cu2+-chelated lipids. In addition, Gd3+-chelated lipids neither alter the protein structures nor induce significant line-width broadening of the protein signals. This work is expected to be beneficial for structural and dynamic studies of large membrane proteins by SSNMR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Baldus M, Petkova AT, Herzfeld J, Griffin RG (1998) Cross polarization in the tilted frame: assignment and spectral simplification in heteronuclear spin systems. Mol Phys 95:1197–1207

    Article  ADS  Google Scholar 

  • Brown LS, Ladizhansky V (2015) Membrane proteins in their native habitat as seen by solid-state NMR spectroscopy. Protein Sci 24:1333–1346

    Article  Google Scholar 

  • Cady SD et al (2010) Structure of the amantadine binding site of influenza M2 proton channels in lipid bilayers. Nature 463:689–692

    Article  ADS  Google Scholar 

  • Castellani F et al (2002) Structure of a protein determined by solid-state magic-angle-spinning NMR spectroscopy. Nature 420:98–102

    Article  ADS  Google Scholar 

  • Chow BY et al (2010) High-performance genetically targetable optical neural silencing by light-driven proton pumps. Nature 463:98–102

    Article  ADS  Google Scholar 

  • Das N et al (2015) Structure of CrgA, a cell division structural and regulatory protein from Mycobacterium tuberculosis, in lipid bilayers. Proc Natl Acad Sci USA 112:E119–E126

    Article  Google Scholar 

  • Delaglio F et al (1995) Nmrpipe—a Multidimensional spectral processing system based on Unix Pipes. J Biomol Nmr 6:277–293

    Article  Google Scholar 

  • Fan Y, Shi LC, Ladizhansky V, Brown LS (2011) Uniform isotope labeling of a eukaryotic seven-transmembrane helical protein in yeast enables high-resolution solid-state NMR studies in the lipid environment. J Biomol Nmr 49:151–161

    Article  Google Scholar 

  • Fragai M et al (2014) SSNMR of biosilica-entrapped enzymes permits an easy assessment of preservation of native conformation in atomic detail. Chem Commun 50:421–423

    Article  Google Scholar 

  • Fung BM, Khitrin AK, Ermolaev K (2000) An improved broadband decoupling sequence for liquid crystals and solids. J Magn Reson 142:97–101

    Article  ADS  Google Scholar 

  • Gardiennet C et al (2012) A sedimented sample of a 59 kDa dodecameric helicase yields high-resolution solid-state NMR spectra. Angewandte Chemie-International Edition 51:7855–7858

    Article  Google Scholar 

  • Hartmann SR, Hahn EL (1962) Nuclear double resonance in rotating frame. Phys Rev 128:2042

    Article  ADS  MATH  Google Scholar 

  • Huber M et al (2011) A proton-detected 4D solid-state NMR experiment for protein structure determination. Chemphyschem 12:915–918

    Article  Google Scholar 

  • Jones DH, Opella SJ (2006) Application of maximum entropy reconstruction to PISEMA spectra. J Magn Reson 179:105–113

    Article  ADS  Google Scholar 

  • Lin EC, Opella SJ (2013) Sampling scheme and compressed sensing applied to solid-state NMR spectroscopy. J Magn Reson 237:40–48

    Article  ADS  Google Scholar 

  • Liu J et al (2016) Sparse C-13 labelling for solid-state NMR studies of P. pastoris expressed eukaryotic seven-transmembrane proteins. J Biomol Nmr 65:7–13

    Article  Google Scholar 

  • Loquet A et al (2008) 3D structure determination of the Crh protein from highly ambiguous solid-state NMR restraints. J Am Chem Soc 130:3579–3589

    Article  Google Scholar 

  • Loquet A et al (2012) Atomic model of the type III secretion system needle. Nature 486:276–279

    ADS  Google Scholar 

  • Lu JX et al (2013) Molecular structure of beta-amyloid fibrils in Alzheimer’s disease brain tissue. Cell 154:1257–1268

    Article  Google Scholar 

  • Marchanka A, Simon B, Carlomagno T (2013) A suite of solid-state NMR experiments for RNA intranucleotide resonance assignment in a 21 kDa protein-RNA complex. Angewandte Chemie-International Edition 52:9996–10001

    Article  Google Scholar 

  • Marchanka A, Simon B, Althoff-Ospelt G, Carlomagno T (2015) RNA structure determination by solid-state NMR spectroscopy. Nat Commun 6. doi:10.1038/ncomms8024

  • Morcombe CR, Zilm KW (2003) Chemical shift referencing in MAS solid state NMR. J Magn Reson 162:479–486

    Article  ADS  Google Scholar 

  • Morcombe CR, Gaponenko V, Byrd RA, Zilm KW (2004) Diluting abundant spins by isotope edited radio frequency field assisted diffusion. J Am Chem Soc 126:7196–7197

    Article  Google Scholar 

  • Nadaud PS, Helmus JJ, Sengupta I, Jaroniec CP (2010) Rapid acquisition of multidimensional solid-state NMR spectra of proteins facilitated by covalently bound paramagnetic tags. J Am Chem Soc 132:9561–9563

    Article  Google Scholar 

  • Palmer MR et al (2015) Sensitivity of nonuniform sampling NMR. J Phys Chem B 119:6502–6515

    Article  Google Scholar 

  • Paramasivam S et al (2012) Enhanced sensitivity by nonuniform sampling enables multidimensional MAS NMR spectroscopy of protein assemblies. J Phys Chem B 116:7416–7427

    Article  Google Scholar 

  • Park SH et al (2012) Structure of the chemokine receptor CXCR1 in phospholipid bilayers. Nature 491:779–783

    Article  Google Scholar 

  • Ravera E et al (2015) NMR of sedimented, fibrillized, silica-entrapped and microcrystalline (metallo)proteins. J Magn Reson 253:60–70

    Article  ADS  Google Scholar 

  • Ravera E et al (2016) H-1-detected solid-state NMR of proteins entrapped in bioinspired silica: a new tool for biomaterials characterization. Sci Rep 6. doi:10.1038/srep27851

  • Sengupta I, Nadaud PS, Helmus JJ, Schwieters CD, Jaroniec CP (2012) Protein fold determined by paramagnetic magic-angle spinning solid-state NMR spectroscopy. Nat Chem 4:410–417

    Article  Google Scholar 

  • Shahid SA et al (2012) Membrane-protein structure determination by solid-state NMR spectroscopy of microcrystals. Nat Methods 9:1212–1217

    Article  Google Scholar 

  • Suiter CL et al (2014) Sensitivity gains, linearity, and spectral reproducibility in nonuniformly sampled multidimensional MAS NMR spectra of high dynamic range. J Biomol Nmr 59:57–73

    Article  Google Scholar 

  • Sun S et al (2012) A time-saving strategy for MAS NMR spectroscopy by combining nonuniform sampling and paramagnetic relaxation assisted condensed data collection. J Phys Chem B 116:13585–13596

    Article  Google Scholar 

  • Takegoshi K, Nakamura S, Terao T (2001) C-13-H-1 dipolar-assisted rotational resonance in magic-angle spinning NMR. Chem Phys Lett 344:631–637

    Article  ADS  Google Scholar 

  • Tang M, Berthold DA, Rienstra CM (2011) Solid-state NMR of a large membrane protein by paramagnetic relaxation enhancement. J Phys Chem Lett 2:1836–1841

    Article  Google Scholar 

  • Ullrich SJ, Holper S, Glaubitz C (2014) Paramagnetic doping of a 7TM membrane protein in lipid bilayers by Gd3+-complexes for solid-state NMR spectroscopy. J Biomol Nmr 58:27–35

    Article  Google Scholar 

  • Verardi R, Shi L, Traaseth NJ, Walsh N, Veglia G (2011) Structural topology of phospholamban pentamer in lipid bilayers by a hybrid solution and solid-state NMR method. Proc Natl Acad Sci USA 108:9101–9106

    Article  ADS  Google Scholar 

  • Wada Y, Kawanabe A, Furutani Y, Kandori H, Ohtani H (2008) Quantum yields for the light adaptations in Anabaena sensory rhodopsin and bacteriorhodopsin. Chem Phys Lett 453:105–108

    Article  ADS  Google Scholar 

  • Wang SL et al (2013) Solid-state NMR spectroscopy structure determination of a lipid-embedded heptahelical membrane protein. Nat Methods 10:1007–1012

    Article  Google Scholar 

  • Wang SL, Ladizhansky V (2014) Recent advances in magic angle spinning solid state NMR of membrane proteins. Prog Nucl Magn Reson Spectrosc 82:1–26

    Article  Google Scholar 

  • Ward ME et al (2014) High-resolution paramagnetically enhanced solid-state NMR spectroscopy of membrane proteins at fast magic angle spinning. J Biomol Nmr 58:37–47

    Article  Google Scholar 

  • Wasmer C et al (2008) Amyloid fibrils of the HET-s(218–289) prion form a beta solenoid with a triangular hydrophobic core. Science 319:1523–1526

    Article  ADS  Google Scholar 

  • Wickramasinghe NP, Kotecha M, Samoson A, Past J, Ishii Y (2007) Sensitivity enhancement in C-13 solid-state NMR of protein microcrystals by use of paramagnetic metal ions for optimizing H-1T-1 relaxation. J Magn Reson 184:350–356

    Article  ADS  Google Scholar 

  • Wickramasinghe NP et al (2009) Nanomole-scale protein solid-state NMR by breaking intrinsic H-1T-1 boundaries. Nat Methods 6:215–218

    Article  Google Scholar 

  • Xiang SQ, Chevelkov V, Becker S, Lange A (2014) Towards automatic protein backbone assignment using proton-detected 4D solid-state NMR data. J Biomol Nmr 60:85–90

    Article  Google Scholar 

  • Xiang SQ, Biernat J, Mandelkow E, Becker S, Linser R (2016) Backbone assignment for minimal protein amounts of low structural homogeneity in the absence of deuteration. Chem Commun 52:4002–4005

    Article  Google Scholar 

  • Yamamoto K, Xu JD, Kawulka KE, Vederas JC, Ramamoorthy A (2010) Use of a copper-chelated lipid speeds up NMR measurements from membrane proteins. J Am Chem Soc 132:6929–6931

    Article  Google Scholar 

Download references

Acknowledgements

All NMR experiments were carried out at the Beijing NMR Center or the NMR Facility of the National Center for Protein Sciences at Peking University. This work was supported by the National Natural Science Foundation of China (Contract No. 31470727), by the National Key Research and Development Program from the Ministry of Science and Technology of the People’s Republic of China (Contract No. 2016YFA0501203), by the Beijing National Laboratory for Molecular Sciences, and by the start-up funds from Peking University. S.W. is a recipient of the 1000 plan for young talent program of China. We thank Prof. Leonid S. Brown, from University of Guelph, for providing LR expression colonies. We thank Dr. Yong Liang, from Xiamen University, for assistance in preparation of Gd3+-DOTA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shenlin Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Liu, J., Xu, X. et al. Gd3+-chelated lipid accelerates solid-state NMR spectroscopy of seven-transmembrane proteins. J Biomol NMR 68, 203–214 (2017). https://doi.org/10.1007/s10858-017-0120-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-017-0120-y

Keywords

Navigation