Skip to main content
Log in

Automated robust and accurate assignment of protein resonances for solid state NMR

  • Article
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

The process of resonance assignment represents a time-consuming and potentially error-prone bottleneck in structural studies of proteins by solid-state NMR (ssNMR). Software for the automation of this process is therefore of high interest. Procedures developed through the last decades for solution-state NMR are not directly applicable for ssNMR due to the inherently lower data quality caused by lower sensitivity and broader lines, leading to overlap between peaks. Recently, the first efforts towards procedures specifically aimed for ssNMR have been realized (Schmidt et al. in J Biomol NMR 56(3):243–254, 2013). Here we present a robust automatic method, which can accurately assign protein resonances using peak lists from a small set of simple 2D and 3D ssNMR experiments, applicable in cases with low sensitivity. The method is demonstrated on three uniformly 13C, 15N labeled biomolecules with different challenges on the assignments. In particular, for the immunoglobulin binding domain B1 of streptococcal protein G automatic assignment shows 100 % accuracy for the backbone resonances and 91.8 % when including all side chain carbons. It is demonstrated, by using a procedure for generating artificial spectra with increasing line widths, that our method, GAMES_ASSIGN can handle a significant amount of overlapping peaks in the assignment. The impact of including different ssNMR experiments is evaluated as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alexandrescu AT (2001) An NMR-based quenched hydrogen exchange investigation of model amyloid fibrils formed by cold shock protein A. Pac Symp Biocomput 6:67–78

    Google Scholar 

  • Altieri AS, Byrd RA (2004) Automation of NMR structure determination of proteins. Curr Opin Struct Biol 14(5):547–553

    Article  Google Scholar 

  • Atreya HS, Sahu SC, Chary KVR, Govil G (2000) A tracked approach for automated NMR assignments in proteins (TATAPRO). J Biomol NMR 17(2):125–136

    Article  Google Scholar 

  • Baran MC, Huang YJ, Moseley HNB, Montelione GT (2004) Automated analysis of protein NMR assignments and structures. Chem Rev 104(8):3541–3555

    Article  Google Scholar 

  • Bartels C, Billeter M, Guntert P, Wuthrich K (1996) Automated sequence-specific NMR assignment of homologous proteins using the program GARANT. J Biomol NMR 7(3):207–213

    Google Scholar 

  • Bartels C, Guntert P, Billeter M, Wuthrich K (1997) GARANT—a general algorithm for resonance assignment of multidimensional nuclear magnetic resonance spectra. J Comput Chem 18(1):139–149

    Article  Google Scholar 

  • Bouvignies G, Meier S, Grzesiek S, Blackledge M (2006) Ultrahigh-resolution backbone structure of perdeuterated protein GB1 using residual dipolar couplings from two alignment media. Angew Chem Int Ed 45(48):8166–8169

    Article  Google Scholar 

  • Cela E (1998) The quadratic assignment problem. Theory and Algorithms. Kluwer Academic Publishers, Dordrecht

  • Chevelkov V, Rehbein K, Diehl A, Reif B (2006) Ultrahigh resolution in proton solid-state NMR spectroscopy at high levels of deuteration. Angew Chem Int Ed 45(23):3878–3881

    Article  Google Scholar 

  • Coeytaux K, Poupon A (2005) Prediction of unfolded segments in a protein sequence based on amino acid composition. Bioinformatics 21(9):1891–1900

    Article  Google Scholar 

  • Coggins BE, Zhou P (2003) PACES: protein sequential assignment by computer-assisted exhaustive search. J Biomol NMR 26(2):93–111

    Article  Google Scholar 

  • Crippen GM, Rousaki A, Revington M, Zhang YB, Zuiderweg ERP (2010) SAGA: rapid automatic mainchain NMR assignment for large proteins. J Biomol NMR 46(4):281–298

    Article  Google Scholar 

  • Eghbalnia HR, Bahrami A, Wang LY, Assadi A, Markley JL (2005) Probabilistic identification of spin systems and their assignments including coil-helix inference as output (PISTACHIO). J Biomol NMR 32(3):219–233

    Article  Google Scholar 

  • Fiaux J, Bertelsen EB, Horwich AL, Wuthrich K (2002) NMR analysis of a 900 K GroEL-GroES complex. Nature 418(6894):207–211

    Article  ADS  Google Scholar 

  • Franks WT, Zhou DH, Wylie BJ, Money BG, Graesser DT, Frericks HL, Sahota G, Rienstra CM (2005) Magic-angle spinning solid-state NMR spectroscopy of the beta 1 immunoglobulin binding domain of protein G (GB1): N-15 and C-13 chemical shift assignments and conformational analysis. J Am Chem Soc 127(35):12291–12305

    Article  Google Scholar 

  • Frigaard NU, Li H, Martinsson P, Das SK, Frank HA, Aartsma TJ, Bryant DA (2005) Isolation and characterization of carotenosomes from a bacteriochlorophyll c-less mutant of Chlorobium tepidum. Photosynth Res 86(1–2):101–111

    Article  Google Scholar 

  • Gallagher T, Alexander P, Bryan P, Gilliland GL (1994) 2 crystal-structures of the B1 immunoglobulin-binding domain of streptococcal protein-G and comparison with nmr. Biochemistry 33(15):4721–4729

    Article  Google Scholar 

  • Gath J, Habenstein B, Bousset L, Melki R, Meier BH, Boeckmann A (2012) Solid-state NMR sequential assignments of alpha-synuclein. Biomol NMR Assigm 6(1):51–55

    Article  Google Scholar 

  • Griswold IJ, Dahlquist FW (2002) Bigger is better: megadalton protein NMR in solution. Nat Struct Biol 9(8):567–568

    Article  Google Scholar 

  • Guerry P, Herrmann T (2011) Advances in automated NMR protein structure determination. Quart Rev Biophys 44(3):257–309

    Article  Google Scholar 

  • Habenstein B, Wasmer C, Bousset L, Sourigues Y, Schuetz A, Loquet A, Meier BH, Melki R, Boeckmann A (2011) Extensive de novo solid-state NMR assignments of the 33 kDa C-terminal domain of the Ure2 prion. J Biomol NMR 51(3):235–243

    Article  Google Scholar 

  • He B, Wang KJ, Liu YL, Xue B, Uversky VN, Dunker AK (2009) Predicting intrinsic disorder in proteins: an overview. Cell Res 19(8):929–949

    Article  Google Scholar 

  • Hitchens TK, Lukin JA, Zhan YP, McCallum SA, Rule GS (2003) MONTE: an automated Monte Carlo based approach to nuclear magnetic resonance assignment of proteins. J Biomol NMR 25(1):1–9

    Article  Google Scholar 

  • Holland GP, Cherry BR, Jenkins JE, Yarger JL (2010) Proton-detected heteronuclear single quantum correlation NMR spectroscopy in rigid solids with ultra-fast MAS. J Magn Reson 202(1):64–71

    Article  ADS  Google Scholar 

  • Hu K-N, Qiang W, Tycko R (2011) A general Monte Carlo/simulated annealing algorithm for resonance assignment in NMR of uniformly labeled biopolymers. J Biomol NMR 50(3):267–276

    Article  Google Scholar 

  • Igumenova TI, McDermott AE, Zilm KW, Martin RW, Paulson EK, Wand AJ (2004) Assignments of carbon NMR resonances for microcrystalline ubiquitin. J Am Chem Soc 126(21):6720–6727

    Article  Google Scholar 

  • Jung YS, Zweckstetter M (2004) Mars—robust automatic backbone assignment of proteins. J Biomol NMR 30(1):11–23

    Article  Google Scholar 

  • Kim S, Szyperski T (2003) GFT NMR, a new approach to rapidly obtain precise high-dimensional NMR spectral information. J Am Chem Soc 125(5):1385–1393

    Article  Google Scholar 

  • Konermann L, Pan JX, Liu YH (2011) Hydrogen exchange mass spectrometry for studying protein structure and dynamics. Chem Soc Rev 40(3):1224–1234

    Article  Google Scholar 

  • Kulminskaya NV, Pedersen MO, Bjerring M, Underhaug J, Miller M, Frigaard N-U, Nielsen JT, Nielsen NC (2012) In situ solid-state NMR spectroscopy of protein in heterogeneous membranes: the baseplate antenna complex of Chlorobaculum tepidum. Angew Chem Int Ed 51(28):6891–6895

    Article  Google Scholar 

  • Kupce E, Freeman R (2003) Fast multi-dimensional NMR of proteins. J Biomol NMR 25(4):349–354

    Article  Google Scholar 

  • Leutner M, Gschwind RM, Liermann J, Schwarz C, Gemmecker G, Kessler H (1998) Automated backbone assignment of labeled proteins using the threshold accepting algorithm. J Biomol NMR 11(1):31–43

    Article  Google Scholar 

  • Lukin JA, Gove AP, Talukdar SN, Ho C (1997) Automated probabilistic method for assigning backbone resonances of (C-13, N-15)-labeled proteins. J Biomol NMR 9(2):151–166

    Article  Google Scholar 

  • Malmodin D, Papavoine CHM, Billeter M (2003) Fully automated sequence-specific resonance assignments of heteronuclear protein spectra. J Biomol NMR 27(1):69–79

    Article  Google Scholar 

  • Moseley HNB, Montelione GT (1999) Automated analysis of NMR assignments and structures for proteins. Curr Opin Struct Biol 9(5):635–642

    Article  Google Scholar 

  • Moseley HNB, Monleon D, Montelione GT (2001) Automatic determination of protein backbone resonance assignments from triple resonance nuclear magnetic resonance data. Nucl Magn Reson Biol Macromol Pt B 339:91–108

    Article  Google Scholar 

  • Moseley HNB, Sperling LJ, Rienstra CM (2010) Automated protein resonance assignments of magic angle spinning solid-state NMR spectra of beta 1 immunoglobulin binding domain of protein G (GB1). J Biomol NMR 48(3):123–128

    Article  Google Scholar 

  • Nagarajan V, Sviridenko M (2009) On the maximum quadratic assignment problem. Math Oper Res 34(4):859–868

    Article  MATH  MathSciNet  Google Scholar 

  • Nielsen JT, Nielsen NC (2014) VirtualSpectrum, a tool for simulating realistic peak list for multi-dimensional NMR spectra. Submitted

  • Nielsen JT, Eghbalnia HR, Nielsen NC (2012) Chemical shift prediction for protein structure calculation and quality assessment using an optimally parameterized force field. Progr Nuc Magn Reson Spectrosc 60:1–28

    Article  Google Scholar 

  • Pedersen MØ, Underhaug J, Dittmer J, Miller M, Nielsen NC (2008) The three-dimensional structure of CsmA: a small antenna protein from the green sulfur bacterium Chlorobium tepidum. FEBS Lett 582(19):2869–2874

    Article  Google Scholar 

  • Rovnyak D, Frueh DP, Sastry M, Sun ZYJ, Stern AS, Hoch JC, Wagner G (2004) Accelerated acquisition of high resolution triple-resonance spectra using non-uniform sampling and maximum entropy reconstruction. J Magn Reson 170(1):15–21

    Article  ADS  Google Scholar 

  • Schmidt E, Guntert P (2012) A new algorithm for reliable and general NMR resonance assignment. J Am Chem Soc 134(30):12817–12829

    Article  Google Scholar 

  • Schmidt E, Gath J, Habenstein B, Ravotti F, Szekely K, Huber M, Buchner L, Boeckmann A, Meier BH, Guentert P (2013) Automated solid-state NMR resonance assignment of protein microcrystals and amyloids. J Biomol NMR 56(3):243–254

    Article  Google Scholar 

  • Schmucki R, Yokoyama S, Guentert P (2009) Automated assignment of NMR chemical shifts using peak-particle dynamics simulation with the DYNASSIGN algorithm. J Biomol NMR 43(2):97–109

    Article  Google Scholar 

  • Tang KS, Man KF, Kwong S, He Q (1996) Genetic algorithms and their applications. IEEE Signal Process Mag 13(6):22–37

    Article  ADS  Google Scholar 

  • Tycko R, Hu K-N (2010) A Monte Carlo/simulated annealing algorithm for sequential resonance assignment in solid state NMR of uniformly labeled proteins with magic-angle spinning. J Magn Reson 205(2):304–314

    Article  ADS  Google Scholar 

  • Ulrich EL, Akutsu H, Doreleijers JF, Harano Y, Ioannidis YE, Lin J, Livny M, Mading S, Maziuk D, Miller Z, Nakatani E, Schulte CF, Tolmie DE, Wenger RK, Yao HY, Markley JL (2008) BioMagResBank. Nucl Acids Res 36:D402–D408

    Article  Google Scholar 

  • Vijaykumar S, Bugg CE, Cook WJ (1987) Structure of ubiquitin refined at 1.8 A resolution. J Mol Biol 194(3):531–544

    Article  Google Scholar 

  • Vilar M, Wang L, Riek R (2012) Structural Studies of Amyloids by Quenched Hydrogen-Deuterium Exchange by NMR. In: Sigurdsson EM, Calero M, Gasset M (eds) Amyloid Proteins: Methods and Protocols, 2ed. 849. Methods Mol Biol 1:pp 185–198

  • Xu Y, Zheng Y, Fan J-S, Yang D (2006) A new strategy for structure determination of large proteins in solution without deuteration. Nat Methods 3(11):931–937

    Article  Google Scholar 

  • Yao J, Dyson HJ, Wright PE (1997) Chemical shift dispersion and secondary structure prediction in unfolded and partly folded proteins. FEBS Lett 419(2–3):285–289

    Article  Google Scholar 

  • Zech SG, Wand AJ, McDermott AE (2005) Protein structure determination by high-resolution solid-state NMR spectroscopy: application to microcrystalline ubiquitin. J Am Chem Soc 127(24):8618–8626

    Article  Google Scholar 

  • Zhang HY, Neal S, Wishart DS (2003) RefDB: a database of uniformly referenced protein chemical shifts. J Biom NMR 25(3):173–195

    Article  Google Scholar 

  • Zhou DHH, Nieuwkoop AJ, Berthold DA, Comellas G, Sperling LJ, Tang M, Shah GJ, Brea EJ, Lemkau LR, Rienstra CM (2012) Solid-state NMR analysis of membrane proteins and protein aggregates by proton detected spectroscopy. J Biomol NMR 54:291

    Article  Google Scholar 

  • Zimmerman DE, Kulikowski CA, Huang YP, Feng WQ, Tashiro M, Shimotakahara S, Chien CY, Powers R, Montelione GT (1997) Automated analysis of protein NMR assignments using methods from artificial intelligence. J Mol Biol 269(4):592–610

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge Prof. Dr. Chad Rienstra for kindly providing a microcrystalline sample of uniformly 13C, 15N labeled GB1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jakob Toudahl Nielsen.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nielsen, J.T., Kulminskaya, N., Bjerring, M. et al. Automated robust and accurate assignment of protein resonances for solid state NMR. J Biomol NMR 59, 119–134 (2014). https://doi.org/10.1007/s10858-014-9835-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-014-9835-1

Keywords

Navigation