Skip to main content
Log in

Fabrication of protease XIV-loaded microspheres for cell spreading in silk fibroin hydrogels

  • Delivery Systems
  • Original Research
  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Due to their excellent mechanical strength and biocompatibility, silk fibroin(SF) hydrogels can serve as ideal scaffolds. However, their slow rate of natural degradation limits the space available for cell proliferation, which hinders their application. In this study, litchi-like calcium carbonate@hydroxyapatite (CaCO3@HA) porous microspheres loaded with proteases from Streptomyces griseus (XIV) were used as drug carriers to regulate the biodegradation rate of SF hydrogels. The results showed that litchi-like CaCO3@HA microspheres with different phase compositions could be prepared by changing the hydrothermal reaction time. The CaCO3@HA microspheres controlled the release of Ca ions, which was beneficial for the osteogenic differentiation of mesenchymal stem cells (MSCs). The adsorption and release of protease XIV from the CaCO3@HA microcarriers indicated that the loading and release amount can be controlled with the initial drug concentration. The weight loss test and SEM observation showed that the degradation of the fibroin hydrogel could be controlled by altering the amount of protease XIV-loaded CaCO3@HA microspheres. A three-dimensional (3D) cell encapsulation experiment proved that incorporation of the SF hydrogel with protease XIV-loaded microspheres promoted cell dispersal and spreading, suggesting that the controlled release of protease XIV can regulate hydrogel degradation. SF hydrogels incorporated with protease XIV-loaded microspheres are suitable for cell growth and proliferation and are expected to serve as excellent bone tissue engineering scaffolds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Miyata T, Uragami T, Nakamae K. Biomolecule-sensitive hydrogels. Adv Drug Deliver Rev. 2002;54:79–98.

    Article  CAS  Google Scholar 

  2. Peppas N. Hydrogels in biology and medicine: from fundamentals to bionanotechnology. Adv Mater. 2006;18:1345–60.

    Article  CAS  Google Scholar 

  3. Nichol JW, Koshy ST, Bae H, Hwang CM, Yamanlar S, Khademhosseini A. Cell-laden microengineered gelatin methacrylate hydrogels. Biomaterials. 2010;31:5536–44.

    Article  CAS  Google Scholar 

  4. Lin Z, Wu M, He H, Liang Q, Hu C, Zeng Z, et al. 3D printing of mechanically stable calcium-free alginate-based scaffolds with tunable surface charge to enable cell adhesion and facile biofunctionalization. Adv Funct Mater. 2019;29:1808439.

    Article  Google Scholar 

  5. Su D, Jiang L, Chen X, Dong J, Shao Z. Enhancing the gelation and bioactivity of injectable silk fibroin hydrogel with Laponite nanoplatelets. Acs Appl Mater Interfaces. 2016;8:9619.

    Article  CAS  Google Scholar 

  6. Vepari C, Kaplan DL. Silk as a biomaterial. Prog Polym Sci. 2007;32:991–1007.

    Article  CAS  Google Scholar 

  7. Abbott RD, Kimmerling EP, Cairns DM, Kaplan DL. Silk as a biomaterial to support long-term three-dimensional tissue cultures. ACS Appl Mater Interfaces. 2016;8:21861–8.

    Article  CAS  Google Scholar 

  8. Hadisi Z, Nourmohammadi J, Mohammadi J. Composite of porous starch-silk fibroin nanofiber-calcium phosphate for bone regeneration. Ceram Int. 2015;41:10745–54.

    Article  CAS  Google Scholar 

  9. Mao KL, Fan ZL, Yuan JD, Chen PP, Xu H-L. Skin-penetrating polymeric nanoparticles incorporated in silk fibroin hydrogel for topical delivery of curcumin to improve its therapeutic effect on psoriasis mouse model. Colloids Surf B Biointerf. 2017;160:704–14.

    Article  CAS  Google Scholar 

  10. Cao Y, Wang B. Biodegradation of silk biomaterials. Int J Mol Sci. 2009;10:1514–24.

    Article  CAS  Google Scholar 

  11. Lin N, Liu XY. Correlation between hierarchical structure of crystal networks and macroscopic performance of mesoscopic soft materials and engineering principles. Chem Soc Rev. 2015;44:7881–915.

    Article  CAS  Google Scholar 

  12. Wang C, Varshney RR, Wang DA. Therapeutic cell delivery and fate control in hydrogels and hydrogel hybrids. Adv Drug Deliver Rev. 2010;62:699–710.

    Article  CAS  Google Scholar 

  13. Kapoor S, Kundu SC. Silk protein-based hydrogels: promising advanced materials for biomedical applications. Acta biomater. 2015;31:17–32.

    Article  Google Scholar 

  14. Melke J, Midha S, Ghosh S, Ito K, Hofmann S. Silk fibroin as biomaterial for bone tissue engineering. Acta Biomater. 2015;31:1–16.

    Article  Google Scholar 

  15. Sun J, Wei D, Zhu Y, Zhong M, Zuo Y, Fan H, et al. A spatial patternable macroporous hydrogel with cell-affinity domains to enhance cell spreading and differentiation. Biomaterials. 2014;35:4759–68.

    Article  CAS  Google Scholar 

  16. Lau TT, Wang C, Wang DA. Cell delivery with genipin crosslinked gelatin microspheres in hydrogel/microcarrier composite. Comp Sci Technol. 2010;70:1909–14.

    Article  CAS  Google Scholar 

  17. Wang C, Bai J, Gong Y, Zhang F, Shen J, Wang D. Enhancing cell affinity of nonadhesive hydrogel substrate: the role of silica hybridization. Biotechnol Progr. 2008;24:1142–6.

    Article  CAS  Google Scholar 

  18. Chandrasekaran A, Novajra G, Carmagnola I, Gentile P, Fiorilli S, Miola M, et al. Physico-chemical and biological studies on three-dimensional porous silk/spray-dried mesoporous bioactive glass scaffolds. Ceram Int. 2016;42:13761–72.

    Article  CAS  Google Scholar 

  19. Li M, Ogiso M, Minoura N. Enzymatic degradation behavior of porous silk fibroin sheets. Biomaterials. 2003;24:357–65.

    Article  CAS  Google Scholar 

  20. Horan RL, Antle K, Collette AL, Wang Y, Huang J, Moreau JE, et al. In vitro degradation of silk fibroin. Biomaterials. 2005;26:3385–93.

    Article  CAS  Google Scholar 

  21. Zhong M, Sun J, Wei D, Zhu Y, Guo L, Wei Q, et al. Establishing a cell-affinitive interface and spreading space in a 3D hydrogel by introduction of microcarriers and an enzyme. J Mater Chem B. 2014;2:6601–10.

    Article  CAS  Google Scholar 

  22. Ciocci M, Cacciotti I, Seliktar D, Melino S. Injectable silk fibroin hydrogels functionalized with microspheres as adult stem cells-carrier systems. Int J Biol Macromol. 2017;108:960–71.

    Article  Google Scholar 

  23. Yuan H, Fernandes H, Habibovic P, de Boer J, Barradas AMC, de Ruiter A, et al. Osteoinductive ceramics as a synthetic alternative to autologous bone grafting. Proc Natl Acad Sci. 2010;107:13614–9.

    Article  CAS  Google Scholar 

  24. Shuai Y, Yang S, Li C, Zhu L, Mao C, Yang M. In situ protein-templated porous protein-hydroxylapatite nanocomposite microspheres for pH-dependent sustained anticancer drug release. J Mater Chem B. 2017;5:3945–54.

    Article  CAS  Google Scholar 

  25. Dziadek M, Stodolak-Zych E, Cholewa-Kowalska K. Biodegradable ceramic-polymer composites for biomedical applications: A review. Mater Sci Eng. 2017;71:1175–91.

    Article  CAS  Google Scholar 

  26. Xiao W, Qu X, Li J, Che L, Tan Y, Li K, et al. Synthesis and characterization of cell-laden double-network hydrogels based on silk fibroin and methacrylated hyaluronic acid. Eur Polym J. 2019;118:382–92.

    Article  CAS  Google Scholar 

  27. Xiao W, Tan Y, Li J, Gu C, Li H, Li B, et al. Fabrication and characterization of silk microfiber-reinforced methacrylated gelatin hydrogel with tunable properties. J Biomater Sci Polym Ed. 2018;29:2068–82.

    Article  CAS  Google Scholar 

  28. Lai W, Chen C, Ren X, Lee IS, Jiang G, Kong X. Hydrothermal fabrication of porous hollow hydroxyapatite microspheres for a drug delivery system. Mater Sci Eng C Mater Biol Appl. 2016;62:166–72.

    Article  CAS  Google Scholar 

  29. Yun JL, Su JP, Lee WK, Ko JS, Kim HM. MG63 osteoblastic cell adhesion to the hydrophobic surface precoated with recombinant osteopontin fragments. Biomaterials. 2003;24:1059–66.

    Article  Google Scholar 

  30. Yang H, Hao L, Du C, Wang Y. A systematic examination of the morphology of hydroxyapatite in the presence of citrate. RSC Adv. 2013;3:23184–9.

    Article  CAS  Google Scholar 

  31. Niu X, Chen S, Feng T, Wang L, Feng Q, Fan Y. Hydrolytic conversion of amorphous calcium phosphate into apatite accompanied by sustained calcium and orthophosphate ions release. Mater Sci Eng C Mater Biol Appl. 2017;70:1120–4.

    Article  CAS  Google Scholar 

  32. Xiao W, Gao H, Qu M, Liu X, Zhang J, Li H, et al. Rapid microwave synthesis of hydroxyapatite phosphate microspheres with hierarchical porous structure. Ceram Int. 2018;44:6144–51.

    Article  CAS  Google Scholar 

  33. Nguyen AT, Huang Q-L, Yang Z, Lin N, Xu G, Liu XY. Crystal networks in silk fibrous materials: from hierarchical structure to ultra performance. Small. 2015;11:1039–54.

    Article  CAS  Google Scholar 

  34. Anselme K. Osteoblast adhesion on biomaterials. Biomaterials. 2010;21:667–81.

    Article  Google Scholar 

  35. Niu X, Liu Z, Tian F, Chen S, Lei L, Jiang T, et al. Sustained delivery of calcium and orthophosphate ions from amorphous calcium phosphate and poly(L-lactic acid)-based electrospinning nanofibrous scaffold. Sci Rep. 2017;7:45655.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The National Natural Science Foundation of China (11532004, 51603026); the Natural Science Foundation Project of CQ (cstc2018jcyjAX0711, cstc2018jcyjAX0286). Chongqing Technology Innovation and Application Development Project (cstc2019jscx-msxmX0231). Chongqing University of Science and Technology Graduate Science and Technology Innovation Project (YKJCX1920213).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bo Li or Xiaoling Liao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

10856_2020_6466_MOESM1_ESM.tif

Figure S1 Digital images of SF hydrogel incorporated with different amounts of protease XIV-loaded litchi-like CaCO3@HA microspheres at different coculture time. (1, 2, 3 represent S0, S5, S10, respectively; a, b, c, d represent 0d, 1d, 3d, 5d, respectively)

10856_2020_6466_MOESM2_ESM.tif

Figure S2 Digital images of SF hydrogel incorporated with different amounts of protease XIV-loaded litchi-like CaCO3@HA microspheres before and after compressive strength test. (a, b, c represent S0, S5, S10, respectively)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, W., Zhang, J., Qu, X. et al. Fabrication of protease XIV-loaded microspheres for cell spreading in silk fibroin hydrogels. J Mater Sci: Mater Med 31, 128 (2020). https://doi.org/10.1007/s10856-020-06466-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10856-020-06466-7

Keywords

Navigation