Skip to main content
Log in

Redox stimulus disulfide conjugated polyethyleneimine as a shuttle for gene transfer

  • Delivery Systems
  • Original Research
  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Redox-responsive cationic polymers have gained considerable attention in gene delivery due to low cytotoxicity and spatio-temporal release of DNA into the cells. Here, we reported the synthesis of reducible disulfide conjugated polyethyleneimine (1.8 kDa) (denoted as SS-PEI) and its application to transfer pEGFP-ZNF580 plasmid (pZNF580) into EA.hy926 cell. This reducible SS-PEI polymer was prepared by one-step polycondensation reaction of low molecular weight PEI with bis-(p-nitrophenyl)-3,3′-dithiodipropionate. The SS-PEI successfully condensed pZNF580 into nano-sized complexes (170 ± 1.5 nm to 255 ± 1.6 nm) with zeta potentials of 3 ± 0.4 mV to 17 ± 0.9 mV. The complexes could be triggered to release pZNF580 when exposed to the reducing environment of 5 mM dithiothreitol. Besides, the SS-PEI exhibited low cytotoxicity. In vitro transfection results showed that SS-PEI exhibited good transfection efficiency comparable to PEI25kDa. Thus, the SS-PEI could act as an reducible gene carrier with good transfection efficiency and low cytotoxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Shim G, Kim D, Park GT, Jin H, Suh S-K, Oh Y-K. Therapeutic gene editing: delivery and regulatory perspectives. Acta Pharmacol Sin. 2017;38:738–53.

    CAS  Google Scholar 

  2. Akinc A, Thomas M, Klibanov AM, Langer R. Exploring polyethylenimine-mediated DNA transfection and the proton sponge hypothesis. J Gene Med. 2005;7:657–63.

    CAS  Google Scholar 

  3. Aied A, Greiser U, Pandit A, Wang W. Polymer gene delivery: overcoming the obstacles. Drug Discov Today. 2013;18:1090–8.

    CAS  Google Scholar 

  4. Collins M, Thrasher A. Gene therapy: progress and predictions. Proc R Soc B. 2015;282:20143003.

    Google Scholar 

  5. McCarron A, Donnelley M, McIntyre C, Parsons D. Challenges of up-scaling lentivirus production and processing. J Biotechnol. 2016;240:23–30.

    CAS  Google Scholar 

  6. Glover DJ, Lipps HJ, Jans DA. Towards safe, non-viral therapeutic gene expression in humans. Nat Rev Genet. 2005;6:299–310.

    CAS  Google Scholar 

  7. Thomas CE, Ehrhardt A, Kay MA. Progress and problems with the use of viral vectors for gene therapy. Nat Rev Genet. 2003;4:346–58.

    CAS  Google Scholar 

  8. Wu CL, Garry MG, Zollo RA, Yang J. Gene therapy for the management of pain. Anesthesiology. 2001;94:1119–32.

    CAS  Google Scholar 

  9. Li Q, Shi C, Zhang W, Behl M, Lendlein A, Feng Y. Nanoparticles complexed with gene vectors to promote proliferation of human vascular endothelial cells. Adv Healthc Mater. 2015;4:1225–35.

    Google Scholar 

  10. Muhammad K, Zhao J, Gao B, Feng Y. J Mater Chem B. 2020. https://doi.org/10.1039/D0TB01675F.

  11. Yang J, Liu W, Lv J, Feng Y, Ren X, Zhang W. REDV–polyethyleneimine complexes for selectively enhancing gene delivery in endothelial cells. J Mater Chem B. 2016;4:3365–76.

    CAS  Google Scholar 

  12. Lv J, Hao X, Yang J, Feng Y, Behl M, Lendlein A. Self-assembly of polyethylenimine-modified biodegradable complex micelles as gene transfer vector for proliferation of endothelial cells. Macromol Chem Phys. 2014;215:2463–72.

    CAS  Google Scholar 

  13. Islam MA, Park TE, Singh B, Maharjan S, Firdous J, Cho M-H, et al. Major degradable polycations as carriers for DNA and siRNA. J Control Release. 2014;193:74–89.

    CAS  Google Scholar 

  14. Duo X, Bai L, Wang J, Guo J, Ren X, Shi C, et al. Multifunctional peptide conjugated amphiphilic cationic copolymer for enhancing ECs targeting, penetrating and nuclear accumulation. Front Chem Sci Eng. 2020;14:889–901.

    CAS  Google Scholar 

  15. Muhammad K, Zhao J, Ullah I, Guo J, Ren X, Feng Y. Ligand targeting and peptide functionalized polymers as non-viral carriers for gene therapy. Biomater Sci. 2020;8:64–83.

    CAS  Google Scholar 

  16. Zhao J, Ullah I, Gao B, Guo J, Ren X, Xia S, et al. Agmatine-grafted bioreducible poly(l-lysine) for gene delivery with low cytotoxicity and high efficiency. J Mater Chem B. 2020;8:2418–30.

    CAS  Google Scholar 

  17. Hao X, Li Q, Ali H, Zaidi SSA, Guo J, Ren X, et al. POSS-cored and peptide functionalized ternary gene delivery systems with enhanced endosomal escape ability for efficient intracellular delivery of plasmid DNA. J Mater Chem B. 2018;6:4251–63.

    CAS  Google Scholar 

  18. Zhao J, Li Q, Hao X, Ren X, Guo J, Feng Y, et al. Multi-targeting peptides for gene carriers with high transfection efficiency. J Mater Chem B. 2017;5:8035–51.

    CAS  Google Scholar 

  19. Zheng M, Zhong Z, Zhou L, Meng F, Peng R, Zhong Z. Poly(ethylene oxide) grafted with short polyethylenimine gives DNA polyplexes with superior colloidal stability, low cytotoxicity, and potent in vitro gene transfection under serum conditions. Biomacromolecules. 2012;13:881–8.

    CAS  Google Scholar 

  20. Wang J, Zaidi SSA, Hasnain A, Guo J, Ren X, Xia S, et al. Multitargeting peptide-functionalized star-shaped copolymers with comblike structure and a POSS-core to effectively transfect endothelial cells. ACS Biomater Sci Eng. 2018;4:2155–68.

    CAS  Google Scholar 

  21. Zhang Q, Gao B, Muhammad K, Zhang X, Ren X, Guo J, et al. Multifunctional gene delivery systems with targeting ligand CAGW and charge reversal function for enhanced angiogenesis. J Mater Chem B. 2019;7:1906–19.

    CAS  Google Scholar 

  22. Godbey W, Barry MA, Saggau P, Wu KK, Mikos AG. Poly(ethylenimine)-mediated transfection: a new paradigm for gene delivery. J Biomed Mater Res. 2000;51:321–8.

    CAS  Google Scholar 

  23. De Smedt SC, Demeester J, Hennink WE. Cationic polymer based gene delivery systems. Pharm Res. 2000;17:113–26.

    CAS  Google Scholar 

  24. Benjaminsen RV, Mattebjerg MA, Henriksen JR, Moghimi SM, Andresen TL. The possible “proton sponge” effect of polyethylenimine (PEI) does not include change in lysosomal pH. Mol Ther. 2013;21:149–57.

    CAS  Google Scholar 

  25. Feng Y, Guo M, Liu W, Hao X, Lu W, Ren X, et al. Co-self-assembly of cationic microparticles to deliver pEGFP-ZNF580 for promoting the transfection and migration of endothelial cells. Int J Nanomed. 2017;12:137–49.

    CAS  Google Scholar 

  26. Lv J, Hao X, Yang J, Feng Y, Behl M, Lendlein A. PEI modified biodegradable complex micelles as gene transfer vector for proliferation of ECs. J Control Release. 2015;213:e60.

    Google Scholar 

  27. Taranejoo S, Liu J, Verma P, Hourigan K. A review of the developments of characteristics of PEI derivatives for gene delivery applications. J Appl Polym Sci. 2015;132:42096.

    Google Scholar 

  28. Lee Y, Miyata K, Oba M, Ishii T, Fukushima S, Han M, et al. Charge‐conversion ternary polyplex with endosome disruption moiety: a technique for efficient and safe gene delivery. Angew Chem. 2008;47:5163–6.

    CAS  Google Scholar 

  29. Itaka K, Harada A, Yamasaki Y, Nakamura K, Kawaguchi H, Kataoka K. In situ single cell observation by fluorescence resonance energy transfer reveals fast intra-cytoplasmic delivery and easy release of plasmid DNA complexed with linear polyethylenimine. J Gene Med. 2004;6:76–84.

    CAS  Google Scholar 

  30. Schaffer DV, Fidelman NA, Dan N, Lauffenburger DA. Vector unpacking as a potential barrier for receptor-mediated polyplex gene delivery. Biotechnol Bioeng. 2000;67:598–606.

    CAS  Google Scholar 

  31. Godbey W, Wu KK, Mikos AG. Size matters: molecular weight affects the efficiency of poly(ethylenimine) as a gene delivery vehicle. J Biomed Mater Res. 1999;45:268–75.

    CAS  Google Scholar 

  32. Zhang H, Chen Z, Du M, Li Y, Chen Y. Enhanced gene transfection efficiency by low-dose 25 kDa polyethylenimine by the assistance of 1.8 kDa polyethylenimine. Drug Delivery. 2018;25:1740–5.

    CAS  Google Scholar 

  33. Liu J, Jiang X, Xu L, Wang X, Hennink WE, Zhuo R. Novel reduction-responsive cross-linked polyethylenimine derivatives by click chemistry for nonviral gene delivery. Bioconjug Chem. 2010;21:1827–35.

    CAS  Google Scholar 

  34. Shuai X, Merdan T, Unger F, Wittmar M, Kissel T. Novel biodegradable ternary copolymershy-PEI-g-PCL-b-PEG: synthesis, characterization, and potential as efficient nonviral gene delivery vectors. Macromolecules. 2003;36:5751–9.

    CAS  Google Scholar 

  35. Lv J, Yang J, Hao X, Ren X, Feng Y, Zhang W. Biodegradable PEI modified complex micelles as gene carriers with tunable gene transfection efficiency for ECs. J Mater Chem B. 2016;4:997–1008.

    CAS  Google Scholar 

  36. Englert C, Hartlieb M, Bellstedt P, Kempe K, Yang C, Chu SK, et al. Enhancing the biocompatibility and biodegradability of linear poly(ethylene imine) through controlled oxidation. Macromolecules. 2015;48:7420–7.

    CAS  Google Scholar 

  37. Wang H, Li Q, Yang J, Guo J, Ren X, Feng Y, et al. Comb-shaped polymer grafted with REDV peptide, PEG and PEI as targeting gene carrier for selective transfection of human endothelial cells. J Mater Chem B. 2017;5:1408–22.

    Google Scholar 

  38. Taranejoo S, Chandrasekaran R, Cheng W, Hourigan K. Bioreducible PEI-functionalized glycol chitosan: a novel gene vector with reduced cytotoxicity and improved transfection efficiency. Carbohydr Polym. 2016;153:160–8.

    CAS  Google Scholar 

  39. Koo H, Jin G-W, Kang H, Lee Y, Nam K, Bai CZ, et al. Biodegradable branched poly(ethylenimine sulfide) for gene delivery. Biomaterials. 2010;31:988–97.

    CAS  Google Scholar 

  40. Kim TH, Cook SE, Arote RB, Cho MH, Nah JW, Choi YJ, et al. A degradable hyperbranched poly(ester amine) based on poloxamer diacrylate and polyethylenimine as a gene carrier. Macromol Biosci. 2007;7:611–9.

    CAS  Google Scholar 

  41. Son S, Namgung R, Kim J, Singha K, Kim WJ. Bioreducible polymers for gene silencing and delivery. Acc Chem Res. 2012;45:1100–12.

    CAS  Google Scholar 

  42. Klein PM, Wagner E. Bioreducible polycations as shuttles for therapeutic nucleic acid and protein transfection. Antioxid Redox Signal. 2014;21:804–17.

    CAS  Google Scholar 

  43. Kim HA, Nam K, Kim SW. Tumor targeting RGD conjugated bio-reducible polymer for VEGF siRNA expressing plasmid delivery. Biomaterials. 2014;35:7543–52.

    CAS  Google Scholar 

  44. Liu X, Mo Y, Liu X, Guo R, Zhang Y, Xue W, et al. Synthesis, characterisation and preliminary investigation of the haemocompatibility of polyethyleneimine-grafted carboxymethyl chitosan for gene delivery. Mater Sci Eng C. 2016;62:173–82.

    CAS  Google Scholar 

  45. Rajesh R, Rekha M, Sharma CP. Evaluation of lauryl chitosan graft polyethyleneimine as a potential carrier of genes and anticancer drugs. Process Biochem. 2012;47:1079–88.

    CAS  Google Scholar 

  46. Peng Q, Zhong Z, Zhuo R. Disulfide cross-linked polyethylenimines (PEI) prepared via thiolation of low molecular weight PEI as highly efficient gene vectors. Bioconjug Chem. 2008;19:499–506.

    CAS  Google Scholar 

  47. Liu S, Huang W, Jin M-J, Fan B, Xia G-M, Gao Z-G. Inhibition of murine breast cancer growth and metastasis by survivin-targeted siRNA using disulfide cross-linked linear PEI. Eur J Pharm Sci. 2016;82:171–82.

    CAS  Google Scholar 

  48. Park K, Lee M-Y, Kim KS, Hahn SK. Target specific tumor treatment by VEGF siRNA complexed with reducible polyethyleneimine–hyaluronic acid conjugate. Biomaterials. 2010;31:5258–65.

    CAS  Google Scholar 

  49. Uludağ H, Bahadur KCR. A comparative evaluation of disulfide-linked and hydrophobically-modified PEI for plasmid delivery. J Biomater Sci Polym Ed.2011;22:873–92.

    Google Scholar 

  50. Kloeckner J, Wagner E, Ogris M. Degradable gene carriers based on oligomerized polyamines. Eur J Pharm Sci. 2006;29:414–25.

    CAS  Google Scholar 

  51. Song Y, Lou B, Zhao P, Lin C. Multifunctional disulfide-based cationic dextran conjugates for intravenous gene delivery targeting ovarian cancer cells. Mol Pharm. 2014;11:2250–61.

    CAS  Google Scholar 

  52. Chen S, Han K, Yang J, Lei Q, Zhuo R-X, Zhang X-Z. Bioreducible polypeptide containing cell-penetrating sequence for efficient gene delivery. Pharm Res. 2013;30:1968–78.

    CAS  Google Scholar 

  53. Zhang X, Duan Y, Wang D, Bian F. Preparation of arginine modified PEI-conjugated chitosan copolymer for DNA delivery. Carbohydr Polym. 2015;122:53–9.

    CAS  Google Scholar 

  54. Shi C, Li Q, Zhang W, Feng Y, Ren X. REDV peptide conjugated nanoparticles/pZNF580 complexes for actively targeting human vascular endothelial cells. ACS Appl Mater Interfaces. 2015;7:20389–99.

    CAS  Google Scholar 

  55. Pandey AP, Sawant KK. Polyethylenimine: a versatile, multifunctional non-viral vector for nucleic acid delivery. Mater Sci Eng C. 2016;68:904–18.

    CAS  Google Scholar 

  56. Liu H, Wang H, Yang W, Cheng Y. Disulfide cross-linked low generation dendrimers with high gene transfection efficacy, low cytotoxicity, and low cost. J Am Chem Soc. 2012;134:17680–7.

    CAS  Google Scholar 

  57. Xun M-M, Xiao Y-P, Zhang J, Liu Y-H, Peng Q, Guo Q, et al. Low molecular weight PEI-based polycationic gene vectors via Michael addition polymerization with improved serum-tolerance. Polymer. 2015;65:45–54.

    CAS  Google Scholar 

  58. Nounou MI, Emmanouil K, Chung S, Pham T, Lu Z, Bikram M. Novel reducible linear L-lysine-modified copolymers as efficient nonviral vectors. J Control Release. 2010;143:326–34.

    CAS  Google Scholar 

  59. Wang H, Feng Y, Yang J, Guo J, Zhang W. Targeting REDV peptide functionalized polycationic gene carrier for enhancing the transfection and migration capability of human endothelial cells. J Mater Chem B. 2015;3:3379–91.

    CAS  Google Scholar 

  60. Mellman I, Fuchs R, Helenius A. Acidification of the endocytic and exocytic pathways. Annu Rev Biochem. 1986;55:663–700.

    CAS  Google Scholar 

  61. Pack DW, Hoffman AS, Pun S, Stayton PS. Design and development of polymers for gene delivery. Nat Rev Drug Discov. 2005;4:581–93.

    CAS  Google Scholar 

  62. Khalil IA, Kogure K, Akita H, Harashima H. Uptake pathways and subsequent intracellular trafficking in nonviral gene delivery. Pharmacol Rev. 2006;58:32–45.

    CAS  Google Scholar 

  63. Whitehead KA, Langer R, Anderson DG. Knocking down barriers: advances in siRNA delivery. Nat Rev Drug Discov. 2009;8:129–38.

    CAS  Google Scholar 

  64. Gaspar VM, Baril P, Costa EC, de Melo-Diogo D, Foucher F, Queiroz JA, et al. Bioreducible poly(2-ethyl-2-oxazoline)–PLA–PEI-SS triblock copolymer micelles for co-delivery of DNA minicircles and doxorubicin. J Control Release. 2015;213:175–91.

  65. Hao X, Li Q, Wang H, Muhammad K, Guo J, Ren X, et al. CAGW modified polymeric micelles with different hydrophobic cores for efficient gene delivery and capillary-like tube formation. ACS Biomater Sci Eng. 2018;4:2870–8.

    CAS  Google Scholar 

  66. Fischer D, Li Y, Ahlemeyer B, Krieglstein J, Kissel T. In vitro cytotoxicity testing of polycations: influence of polymer structure on cell viability and hemolysis. Biomaterials. 2003;24:1121–31.

    CAS  Google Scholar 

  67. Li Q, Hao X, Lv J, Ren X, Zhang K, Ullah I, et al. Mixed micelles obtained by co-assembling comb-like and grafting copolymers as gene carriers for efficient gene delivery and expression in endothelial cells. J Mater Chem B. 2017;5:1673–87.

    CAS  Google Scholar 

Download references

Acknowledgements

This project was supported by National Natural Science Foundation of China (Grant Nos. 51673145 and 51873149), National Key R&D Program of China (Grant No. 2016YFC1100300), Higher Education Department Govt. of KPK, Pakistan and Higher Education Commission, Islamabad Pakistan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yakai Feng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ullah, I., Zhao, J., Su, B. et al. Redox stimulus disulfide conjugated polyethyleneimine as a shuttle for gene transfer. J Mater Sci: Mater Med 31, 118 (2020). https://doi.org/10.1007/s10856-020-06457-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10856-020-06457-8

Navigation