Skip to main content

Advertisement

Log in

Biological and microbiological behavior of calcium aluminate cement-based blend for filling of bone defects

  • Biocompatibility Studies
  • Original Research
  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Calcium aluminate cement (CAC) as a biomaterial has been evaluated for its physical, mechanical and biocompatibility properties. Furthermore, the application of CAC for bone repair is due to its composition and coefficient of thermal expansion, which is similar to that of human bone. Thus, the aim of this study was to evaluate compositions of CAC-based blends as substitutes for bone defects. Five compositions of blends (alumina, zirconia, hydroxyapatite, tricalcium phosphate, chitosan), in addition to the base cement consisting of homogeneous CAC were evaluated as a substitute for bone repair. Additionally, the monotypic biofilm formation was assessed. Creation of a monocortical bone defect was performed on the femurs of rats, which were randomly filled with the different materials. The polymethylmethacrylate (PMMA) group was used as a control. All the animals were euthanized 04 weeks after the surgery procedure. Subsequently, computerized microtomography, histological and histomorphometric analyses were performed to verify the bone repair. To evaluate the formation of biofilms, reference strains of Staphylococcus aureus, Streptococcus mutans and Pseudomonas aeruginosa were cultured on the samples, and the biofilm formed was quantified by the MTT method. In the microtomography and histomorphometry results, it was observed that the blends exhibited better results than the control group, with statistically significant differences (p < 0.05) for alumina and zirconia blends. In the biofilm formation, a statistical difference (p < 0.05) in general was observed between the alumina blends and the control group (p < 0.05). It was concluded that CAC-based blends with alumina and zirconia are promising for use in fillings for bone repair.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Tabata Y. Biomaterial technology for tissue engineering applications. J R Soc Interface. 2009;6:311–24. https://doi.org/10.1098/rsif.2008.0448.focus.

    Article  Google Scholar 

  2. Ozaki W, Buckman SR. Volume maintenance of onlay bone grafts in the craniofacial skeleton: micro-architecture versus embryologic origin. Plast Reconstr Surg. 1998;102:291–9.

    Article  CAS  Google Scholar 

  3. Prakasam M, Locs J, Salma-Ancane K, Loca D, Largeteau A, Berzina-Cimdina L. Fabrication, properties and applications of dense hydroxyapatite: a review. J Funct Biomater. 2015;4:1099–140. https://doi.org/10.3390/jfb6041099.

    Article  Google Scholar 

  4. Boger A, Bisig A, Bohner M, Heini P, Schneider E. Variation of the mechanical properties of PMMA to suit osteoporotic cancellous bone. J Biomater Sci Polym Ed. 2008;19:1125–42. https://doi.org/10.1163/156856208785540154.

    Article  CAS  Google Scholar 

  5. Cakarer S, Selvi F, Isler SC, Olgac V, Keskin C. Complication of polymethylmethacrylate bone cement in the mandible. Craniofac Surg. 2010;21:1196–8. https://doi.org/10.1097/SCS.0b013e3181e17b4e.

    Article  Google Scholar 

  6. Perni S, Thenault V, Abdo P, Margulis K, Magdassi S, Prokopovich P. Antimicrobial activity of bone cements embedded with organic nanoparticles. Int J Nanomed. 2015;10:6317–29. https://doi.org/10.2147/IJN.S86440.

    Article  CAS  Google Scholar 

  7. Parreira RM, Andrade TL, Luz AP, Pandolfellib VC, Oliveira IR. Calcium aluminate cement-based compositions for biomaterial applications. Ceram Int. 2016;42:1173238.

    Article  Google Scholar 

  8. Garcia LFR, Huck C, Scardueli CR, Alberto C, Costa DS. Repair of bone defects filled with new calcium aluminate. J Endod Elsevier. 2015;41:864–70. https://doi.org/10.1016/j.joen.2014.12.029.

    Article  Google Scholar 

  9. Castro-Raucci LM, Teixeira LN, Oliveira IR, Raucci-Neto W, Jacobovitz M, Rosa AL, et al. Osteogenic cell response to calcium aluminate-based cement. Int Endod J. 2017;50:771–9. https://doi.org/10.1111/iej.12682.

    Article  CAS  Google Scholar 

  10. Acuña-Gutiérrez IO, Escobedo-Bocardo JC, Almanza-Robles JM, Cortés-Hernández DA, Saldívar-Ramírez MM, Reséndiz-Hernández PJ, Zugasti-Cruz A. Development of LiCl-containing calcium aluminate cement for bone repair and remodeling applications. Mater Sci Eng C Mater Biol Appl. 2017;70:357–63. https://doi.org/10.1016/j.msec.2016.09.022.

    Article  Google Scholar 

  11. Moraes PC, Marques ICS, Basso FG, Rossetto HL, Pires-de-Souza FCP, Costa CAS, Garcia LDFR. Repair of bone defects with chitosan-collagen biomembrane and scaffold containing calcium aluminate cement. Braz Dent J. 2017;28:287–95.

    Article  Google Scholar 

  12. Walsh RM, Woodmansey KF, He J, Svoboda KK, Primus CM, Opperman LA. Histology of NeoMTA plus and Quick-Set2 in contact with pulp and periradicular tissues in a canine model. J Endod. 2018;44:1389–95. https://doi.org/10.1016/j.joen.2018.05.001.

    Article  Google Scholar 

  13. Vasconcellos LMR, Barbara MAM, Deco CP, et al. Healing of normal and osteopenic bone with titanium implant and low-level laser therapy (GaAlAs): a histomorphometric study in rats. Lasers Med Sci. 2014;29:575–80. https://doi.org/10.1007/s10103-013-1326-1.

    Article  Google Scholar 

  14. Vasconcellos LMR, Barbara MAM, da Silva Rovai E, et al. Titanium scaffold osteogenesis in healthy and osteoporotic rats is improved by the use of low-level laser therapy (GaAlAs). Lasers Med Sci. 2016;31:899–905. https://doi.org/10.1007/s10103-017-2167-0.

    Article  Google Scholar 

  15. Kilkenny C, Browne WJ, Cuthill IC, et al. Improving bioscience research reporting: the arrive guidelines for reporting animal research. Animals. 2013;4:35–44. https://doi.org/10.3390/ani4010035.

    Article  Google Scholar 

  16. Connolly JF, Guse R, Tiedeman J, Dehne R. Autologous marrow injection for delayed unions of the tibia: a preliminary report. J Orth Trauma. 1989;4:276–82.

    Article  Google Scholar 

  17. Cankaya AB, Kasapoglu MB, Erdem MA, Kasapoglu C. Effects of polymethylmethacrylate on the stability of screw fixation in mandibular angle fractures: a study on sheep mandibles. Int J Med Sci. 2018;15:1466–71. https://doi.org/10.7150/ijms.26697.

    Article  Google Scholar 

  18. Zhang X, Kang T, Liang P, Tang Y, Quan C. Biological activity of an injectable biphasic calcium phosphate/PMMA bone cement for induced osteogensis in rabbit model. Macromol Biosci. 2018;18. https://doi.org/10.1002/mabi.201700331.

    Article  Google Scholar 

  19. Cuijpers VMJI, Jaroszewicz J, Anil S, Al Farraj Aldosari A, Walboomers XF, Jansen JA. Resolution, sensitivity, and in vivo application of high-resolution computed tomography for titanium-coated polymethyl methacrylate (PMMA) dental implants. Clin Oral Implants Res. 2014;3:359–65. https://doi.org/10.1111/clr.12128.

    Article  Google Scholar 

  20. Puska M, Moritz N, Aho AJ, Vallittu PK. Morphological and mechanical characterization of composite bone cement containing polymethylmethacrylate matrix functionalized with trimethoxysilyl and bioactive glass. J Mech Behav Biomed Mater. 2016;59:11–20. https://doi.org/10.1016/j.jmbbm.2015.12.016.

    Article  CAS  Google Scholar 

  21. Cui X, Huang C, Zhang M, Ruan C, Peng S, Li L, et al. Enhanced osteointegration of poly(methylmethacrylate) bone cements by incorporating strontium-containing borate bioactive glass. J R Soc Interface. 2017;14:1–13. https://doi.org/10.1098/rsif.2016.1057.

    Article  Google Scholar 

  22. Cimatti B, Santos MAD, Brassesco MS, Okano LT, Barboza WM, Nogueira-Barbosa MH, et al. Safety, osseointegration, and bone ingrowth analysis of PMMA-based porous cement on animal metaphyseal bone defect model. J Biomed Mater Res B Appl Biomater. 2018;106:649–58. https://doi.org/10.1002/jbm.b.33870.

    Article  CAS  Google Scholar 

  23. Sangeetha R, Madheswari D, Priya G. Fabrication of poly (methyl methacrylate)/Ce/Cu substituted apatite/Egg white (Ovalbumin) biocomposite owning adjustable properties: towards bone tissue rejuvenation. J Photochem Photobio B. 2018;16:162–9. https://doi.org/10.1016/j.jphotobiol.2018.08.015

    Article  CAS  Google Scholar 

  24. Castro-Raucci LMS, Teixeira LN, Barbosa AFS, Fernandes RR, Raucci-Neto W, Jacobovitz M, et al. Calcium chloride-enriched calcium aluminate cement promotes in vitro osteogenesis. Int Endod J. 2018;51:674–83. https://doi.org/10.1111/iej.12883.

    Article  CAS  Google Scholar 

  25. Wu T, Yang S, Shi H, Ye J. Preparation and cytocompatibility of a novel bismuth aluminate/calcium phosphate cement with high radiopacity. J Mater Sci Mater Med 2018;29:149 https://doi.org/10.1007/s10856-018-6154-1.

    Article  Google Scholar 

  26. Huck C, Barud HD, Basso FG, Costa CA, Hebling J, Garcia LD. Cytotoxicity of new calcium aluminate cement (EndoBinder) containing different radiopacifiers. Braz Dent J. 2017;28:57–64. https://doi.org/10.1590/0103-6440201701023.

    Article  Google Scholar 

  27. Venkatesan J, Kim SK. Nano-hydroxyapatite composite biomaterials for bone tissue engineering—a review. J Biomed Nanotechnol. 2014;10:3124–40. https://doi.org/10.1166/jbn.2014.1893.

    Article  CAS  Google Scholar 

  28. Chazono M, Tanaka T, Komaki H. Bone formation and bioresorption after implantation of injectable β-tricalcium phosphate granules—hyaluronate complex in rabbit bone defects. J Biomed Mater Res A. 2004;70:542–9.

    Article  Google Scholar 

  29. Bellucci D, Sola A, Cannillo V. Hydroxyapatite and tricalcium phosphate composites with bioactive glass as second phase: state of the art and current applications. J Biomed Mater Res A. 2016;104:1030–56. https://doi.org/10.1002/jbm.a.35619.

    Article  CAS  Google Scholar 

  30. Noguchi H, Funayama T, Koda M, Iijima Y, Kumagai H, Ishikawa T, Aiba A, Abe T, Nagashima K, Miura K, Izawa S, Maki S, Furuya T, Yamazaki M. A unidirectional porous beta-tricalcium phosphate material (Affinos®) for reconstruction of bony defects after excision of fibular bone for spinal surgery graft. J Clin Neurosci. 2019;66:71–6. https://doi.org/10.1016/j.jocn.2019.05.021.

    Article  CAS  Google Scholar 

  31. Bhardwaj VA, Deepika PC, Basavarajaiah S. Zinc incorporated nano hydroxyapatite: a novel bone graft used for regeneration of intrabony defects. Contemp Clin Dent. 2018;9:427–33. https://doi.org/10.4103/ccd.ccd_192_18.

    Article  CAS  Google Scholar 

  32. Rahmati R, Khodabakhshi F. Microstructural evolution and mechanical properties of a friction-stir processed Ti-hydroxyapatite (HA) nanocomposite. J Mech Behav Biomed Mater. 2018;88:127–39. https://doi.org/10.1016/j.jmbbm.2018.08.025.

    Article  CAS  Google Scholar 

  33. Geng Z, Wang X, Zhao J, Li Z, Ma L, Zhu S, Liang Y, Cui Z, He H, Yang X. The synergistic effect of strontium-substituted hydroxyapatite and microRNA-21 on improving bone remodeling and osseointegration. Biomater Sci. 2018;22:1–38. https://doi.org/10.1039/c8bm00716k.

    Article  Google Scholar 

  34. Sancilio S, Gallorini M, Di Nisio C, Marsich E, Di Pietro R, Schweikl H, et al. Alginate/hydroxyapatite-based nanocomposite scaffolds for bone tissue engineering improve dental pulp biomineralization and differentiation. Stem Cells Int. 2018;2018:1–13. https://doi.org/10.1155/2018/9643721.

    Article  Google Scholar 

  35. Dion I, Rouais F, Baquey C, Lahaye M, Salmon R, Trut L, et al. Physico-chemistry and cytotoxicity of ceramics. J Mater Sci Mater Med. 1997;5:325–32.

    Article  Google Scholar 

  36. Denry I, Kelly JR. State of the art of zirconia for dental applications. Dent Mater 2008;3:299–307. https://doi.org/10.1016/j.dental.2007.05.007.

    Article  Google Scholar 

  37. Uchida M, Kim H-M, Kokubo T, Miyaji F, Nakamura T. Bonelike apatite formation induced on zirconia gel in a simulated body fluid and its modified solutions. J Am Ceram Soc. 2001;84:2041–44. https://doi.org/10.1111/j.1151-2916.2001.tb00955.x

    Article  CAS  Google Scholar 

  38. Mobasherpour I, Solati Hashjin M, Razavi Toosi SS, Darvishi Kamachali R. Effect of the addition ZrO2-Al2O3 on nanocrystalline hydroxyapatite bending strength and fracture toughness. Ceram Int 2009;35:1569–74. https://doi.org/10.1016/j.ceramint.2008.08.017.

    Article  CAS  Google Scholar 

  39. Askari E, Mehrali M, Metselaar IH, Kadri NA, Rahman MM. Fabrication and mechanical properties of functionally graded material by electrophoretic deposition. J Mech Behav Biomed Mater. 2012;12:144–50. https://doi.org/10.1016/j.jmbbm.2012.02.029.

    Article  CAS  Google Scholar 

  40. Huang XN, Nicholson OS. Mechanical properties and fracture toughness of α-Al2O3-platelet-reinforced γ-PSZ composites at room and high temperatures. J Am Ceram Soc. 1993;76:1294–301. https://doi.org/10.1111/j.1151-2916.1993.tb03754.x.

    Article  CAS  Google Scholar 

  41. Shirazi FS, Mehrali M, Oshkour AA, Metselaar HSC, Kadri NA, Abu Osman NA. Mechanical and physical properties of calcium silicate/alumina composite for biomedical engineering applications. J Mech Behav Biomed Mater. 2014;30:168–75. https://doi.org/10.1016/j.jmbbm.2013.10.024.

    Article  CAS  Google Scholar 

  42. Dale H, Hallan G, Hallan G, Espehaug B, Havelin LI, Engesaeter LB. Increasing risk of revision due to deep infection after hip arthroplasty. Acta Orthop 2009;80:639–45. https://doi.org/10.3109/17453670903506658.

    Article  Google Scholar 

  43. Widmer AF. New developments in diagnosis and treatment of infection in orthopedic implants. Clin Infect Dis. 2001;33:S94–106. https://doi.org/10.1086/321863.

    Article  Google Scholar 

  44. Tappa KK, Jammalamadaka UM, Mills DK. Design and evaluation of a nanoenhanced anti-infective calcium phosphate bone cements. Conf Proc IEEE Eng Med Biol Soc. 2014;2014:3921–4. https://doi.org/10.1109/EMBC.2014.6944481.

    Article  Google Scholar 

  45. Ikeda S, Uchiyama K, Minegishi Y, Ohno K, Nakamura M, Yoshida K, Fukushima K, Takahira N, Takaso N. Double-layered antibiotic-loaded cement spacer as a novel alternative for managing periprosthetic joint infection: an in vitro study. J Orthop Surg Res. 2018;13:322. https://doi.org/10.1186/s13018-018-1033-5.

    Article  Google Scholar 

  46. Moraes PC, Marques ICS, Basso FG, Rossetto HL, Pires-de-Souza FCP, Costa CAS, Garcia LDFR. Repair of bone defects with chitosan-collagen biomembrane and scaffold containing calcium aluminate cement. Braz Dent J. 2017;28:287–95.

    Article  Google Scholar 

  47. Wang D, Liu Y, Liu Y, Yan L, Zaat SAJ, Wismeijer D, et al. A dual functional bone-defect-filling material with sequential antibacterial and osteoinductive properties for infected bone defect repair. J Biomed Mater Res A. 2019. https://doi.org/10.1002/jbm.a.36744.

    Article  CAS  Google Scholar 

  48. Bano I, Arshad M, Yasin T, Ghauri MA, Younus M. Chitosan: a potential biopolymer for wound management. Int J Biol Macromol. 2017;102:380–3. https://doi.org/10.1016/j.ijbiomac.2017.04.047.

    Article  CAS  Google Scholar 

  49. Verlee A, Mincke S, Stevens CV. Recent developments in antibacterial and antifungal chitosan and its derivatives. Carbohydr Polym. 2017;164:268–83. https://doi.org/10.1016/j.carbpol.2017.02.001.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Foundation for Research Support of the State of Sao Paulo (FAPESP), Brazil, and Coordination of Improvement of Higher Level Personnel (CAPES) for financial support.

Funding

This work was supported by FAPESP, Sao Paulo, Brazil (2016/15032-3 and 2017/22183-0 process), and by a CAPES scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luana Marotta Reis de Vasconcellos.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This study was approved by the Commission of Ethics in the Use of Animals of the Institute of Science and Technology of Unesp—Campus de São José dos Campos (CEUA/Unesp—CSJC—ICT) under number 07/2017 and the procedures were carried out according to the Ethical Principles for Animal Experimentation.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Vasconcellos, L.M.R., Camporês, K.L., de Alcântara Abdala, J.M. et al. Biological and microbiological behavior of calcium aluminate cement-based blend for filling of bone defects. J Mater Sci: Mater Med 31, 10 (2020). https://doi.org/10.1007/s10856-019-6348-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10856-019-6348-1

Navigation