Skip to main content
Log in

Antioxidant efficacy of chitosan/graphene functionalized superparamagnetic iron oxide nanoparticles

  • Biomaterials Synthesis and Characterization
  • Original Research
  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

The antioxidant potential of superparamagnetic iron oxide nanoparticles functionalized with chitosan and graphene were examined in the present work. Coprecipitation technique was followed for the synthesis of iron oxide nanoparticles. Graphene-iron oxide nanocomposites were synthesized by mechanical mixing followed by the heat treatment at moderate temperature. The chitosan coated iron oxide nanoparticles were prepared by dispersing nanoparticles in chitosan solution. The nanoparticles/nanocomposites were characterized using XRD, SEM, TEM and HAADF-STEM for phase structure, morphology and elemental analysis. The superparamagnetic behavior of nanoparticles/nanocomposites were confirmed by magnetic measurements using vibrating sample magnetometry. Antioxidant efficacy of these nanoparticles/nanocomposites were investigated in terms of free radical scavenging and reducing potential using an array of in vitro assay system. Ferric reducing antioxidant power (FRAP) and 2,2′-diphenyl-1-picrylhydrazyl (DPPH) were used for the antioxidant capacity. The investigation suggests that the graphene improves the antiradical response of iron oxide nanoparticles at higher concentration which is almost comparable to the ascorbic acid used as standard.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Chung YC, Chang CT, Chao WW, Lin CF, Chou ST. Antioxidative activity and safety of the 50% ethanolic extract from red bean fermented by Bacillus subtilis IMR-NK1. J Agric Food Chem. 2002;50:2454–8.

    Article  CAS  Google Scholar 

  2. Duthie G. Lipid peroxidation. Eur J Clin Nutr. 1993;47:759–64.

    CAS  Google Scholar 

  3. Witschi HP. Enhanced tumour development by butylated hydroxytoluene (BHT) in the liver, lung and gastro-intestinal tract. Food Chem Toxicol. 1986;24:1127–30.

    Article  CAS  Google Scholar 

  4. Grice HC. Safety evaluation of butylated hydroxyanisole from the perspective of effects on forestomach and oesophageal squamous epithelium. Food Chem Toxicol. 1988;26:717–23.

    Article  CAS  Google Scholar 

  5. Moein MR, Moein S, Ahmadizadeh S. Radical scavenging and reducing power of salvia mirzayanii subfractions. Molecules. 2008;13:2804–13.

    Article  CAS  Google Scholar 

  6. Kulisic T, Radonic A, Katalinic V, Milos M. Use of different methods for testing antioxidative activity of oregano essential oil. Food Chem. 2004;85:633–40.

    Article  CAS  Google Scholar 

  7. Marques SS, Magalhães LM, Tóth IV, Segundo MA. Insights on antioxidant assays for biological samples based on the reduction of copper complexes-The importance of analytical conditions. Int J Mol Sci. 2014;15:11387–402.

    Article  Google Scholar 

  8. Paul S, Saikia JP, Samdarshi SK, Konwar BK. Investigation of antioxidant property of iron oxide particlesby 1′-1′diphenylpicryl-hydrazyle (DPPH) method. J Magn Magn Mater. 2009;321:3621–3.

    Article  CAS  Google Scholar 

  9. Frey NA, Peng S, Cheng K, Sun S. Magnetic nanoparticles: synthesis, functionalization, and applications in bioimaging and magnetic energy storage. Chem Soc Rev. 2009;27:2532–42.

    Article  Google Scholar 

  10. Polshettiwar V, Luque R, Fihri A, Zhu H, Bouhrara M, Basset JM. Magnetically recoverable nanocatalysts. Chem Rev. 2011;111:3036–75.

    Article  CAS  Google Scholar 

  11. Mangrulkar PA, Polshettiwar V, Labhsetwar NK, Varma RS, Rayalu SS. Nano-ferrites for water splitting: unprecedented high photocatalytic hydrogen production under visible light. Nanoscale. 2012;4:5202.

    Article  CAS  Google Scholar 

  12. Kumar CSSR, Mohammad F. Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery. Adv Drug Deliv Rev. 2011;63:789–808.

    Article  CAS  Google Scholar 

  13. Pankhurst QA, Connolly J, K JS, Dobson J. Applications of magnetic nanoparticles in biomedicine. J Phys D Appl Phys. 2003;36:R167–81.

    Article  CAS  Google Scholar 

  14. Qiao R, Yang C, Gao M. Superparamagnetic iron oxide nanoparticles: from preparations to in vivo MRI applications. J Mater Chem. 2009;19:6274.

    Article  CAS  Google Scholar 

  15. Macher T, Totenhagen J, Sherwood J, Qin Y, Gurler D, Bolding MS, et al. Ultrathin iron oxide nanowhiskers as positive contrast agents for magnetic resonance imaging. Adv Funct Mater. 2015;25:490–4.

    Article  CAS  Google Scholar 

  16. Iv M, Telischak N, Feng D, Holdsworth S, Yeom K, Daldrup-Link H. Clinical applications of iron oxide nanoparticles for magnetic resonance imaging of brain tumors. Nanomed (Lond). 2015;10:993–1018.

    Article  CAS  Google Scholar 

  17. Goodwill PW, Conolly SM. Experimental demonstration of X-space magnetic particle imaging. SPIE Proc Med Imaging. 2011;7965:79650U–79650U–6.

    Article  Google Scholar 

  18. Tomitaka A, Arami H, Gandhi S, Krishnan KM. Lactoferrin conjugated iron oxide nanoparticles for targeting brain glioma cells in magnetic particle imaging. Nanoscale R Soc Chem. 2015;7:16890–8.

    Article  CAS  Google Scholar 

  19. Lu AH, Salabas EL, Schüth F. Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew Chem Int Ed Engl. 2007;46:1222–44.

    Article  CAS  Google Scholar 

  20. Gupta AK, Gupta M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials. 2005;26:3995–4021.

    Article  CAS  Google Scholar 

  21. Demirer GS, Okur AC, Kizilel S. Synthesis and design of biologically inspired biocompatible iron oxide nanoparticles for biomedical applications. J Mater Chem B. 2015;3:7831–49.

    Article  CAS  Google Scholar 

  22. Kostevsek N, Locatelli E, Garrovo C, Arena F, Monaco I, Nikolov IP, et al. The one-step synthesis and surface functionalization of dumbbell-like gold–iron oxide nanoparticles: a chitosan-based nanotheranostic system. Chem Commun R Soc Chem. 2016;52:378–81.

    Article  CAS  Google Scholar 

  23. Qiu Y, Wang Z, Owens ACE, Kulaots I, Yantao Chen AB. Antioxidant chemistry of graphene-based materials and its role in oxidation protection technology. Nanoscale . 2014;6:11744–55.

    Article  CAS  Google Scholar 

  24. Stoller MD, Park S, Yanwu Z, An J, Ruoff RS. Graphene-based ultracapacitors. Nano Lett. 2008;8:3498–502.

    Article  CAS  Google Scholar 

  25. Mayorov AS, Gorbachev RV, Morozov SV, Britnell L, Jalil R, Ponomarenko LA, Blake P, Novoselov KS, Watanabe K, Taniguchi T. Micrometer-scale ballistic transport in encapsulated graphene at room temperature. Nano Lett. 2011;11:2396–9.

    Article  CAS  Google Scholar 

  26. Li X, Zhu Y, Cai W, Borysiak M, Han B, Chen D, et al. Transfer of large-area graphene films for high-performance transparent conductive electrodes. Nano Lett. 2009;9:4359–63.

    Article  CAS  Google Scholar 

  27. Zhang Y, Tan YW, Stormer HL, Kim P. Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature. 2005;438:201–4.

    Article  CAS  Google Scholar 

  28. Moser J, Hertel S, Kisslinger F, Jobst J, Waldmann D, Krieger M, AB and ABB and AB. et al. Current-induced cleaning of graphene. Appl Phys Lett. 2011;98:3–6.

    Google Scholar 

  29. Yang Y, Asiri AM, Tang Z, Du D, Lin Y. Graphene based materials for biomedical applications. Mater Today Elsevier Ltd. 2013;16:365–73.

    Article  CAS  Google Scholar 

  30. Bandi S, Hastak V, Peshwe DR, Srivastav AK.In-situ TiO2–rGO nanocomposites for CO gas sensing.Bull Mater Sci. 2018;41:115

    Article  Google Scholar 

  31. Xuan Nui P, Tan Phuoc N, Tuyet Nhung P, Thi Thuy Nga TT, Hi V, Thi T. Synthesis and characterization of chitosan- coated magnetite nanoparticles and their application in curcumin drug delivery. Adv Nat Sci Nanosci Nanotechnol. 2016;7:1–9.

    Google Scholar 

  32. Benzie IFF, Strain JJ. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal Biochem. 1996;239:70–6.

    Article  CAS  Google Scholar 

  33. Pulido R, Bravo L, Saura-Calixto F. Antioxidant activity of dietary polyphenols as determined by a modified ferric reducing/antioxidant power assay. J Agric Food Chem. 2000;48:3396–402.

    Article  CAS  Google Scholar 

  34. Prieto P, Pineda M, Aguilar M. Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdinum complex: specific application to the determination of Vitamin E. Anal Biochem. 1999;269:337–41.

    Article  CAS  Google Scholar 

  35. Yen GC, Chen HY. Antioxidant activity of various tea extracts in relation to their antimutagenicity. J Agric Food Chem. 1995;43:27–32.

    Article  CAS  Google Scholar 

  36. Luqman S, Kumar R, Kaushik S, Srivastava S, Darokar MP, Khanuja SPS. Antioxidant potential of the root of Vetiveria zizanioides (L.) Nash. Indian J Biochem Biophys. 2009;46:122–5.

    CAS  Google Scholar 

  37. Srivastav AK, Chawake N, Murty BS. Grain-size-dependent non-monotonic lattice parameter variation in nanocrystalline W: the role of non-equilibrium grain boundary structure. Scr Mater. 2015;98:20–3.

    Article  CAS  Google Scholar 

  38. Cullity BD, Graham CD. Introduction to Magnetic Materials. B IEEE, ISBN 978-0-471-47741-9. 2008;47741.

  39. Galano A.Carbon nanotubes as free-radical scavengers.J Phys Chem C. 2008;112:8922–7.

    Article  CAS  Google Scholar 

  40. Bitner BR, Marcano DC, Berlin JM, Fabian RH, Cherian L, Culver JC, et al. Antioxidant carbon particles improve cerebrovascular dysfunction following traumatic brain injury. ACS Nano. 2012;6:8007–14.

    Article  CAS  Google Scholar 

  41. Burton G, Ingold K. beta-Carotene: an unusual type of lipid antioxidant. Sci (80-). 1984;224:569–73.

    Article  CAS  Google Scholar 

  42. Martínez A, Galano A. Free radical scavenging activity of ultrashort single-walled carbon nanotubes with different structures through electron transfer reactions. J Phys Chem C. 2010;114:8184–91.

    Article  Google Scholar 

  43. Morita Y, Suzuki S, Sato K, Takui T. Synthetic organic spin chemistry for structurally well-defined open-shell graphene fragments. Nat Chem Nat Publ Group. 2011;3:197–204.

    Article  CAS  Google Scholar 

  44. Wright JS, Johnson ER, DiLabio GA. Predicting the activity of phenolic antioxidants: theoretical method, analysis of substituent effects, and application to major families of antioxidants. J Am Chem Soc. 2001;123:1173–83.

    Article  CAS  Google Scholar 

  45. Xie M, Hu B, Wang Y, Zeng X. Grafting of gallic acid onto chitosan enhances antioxidant activities and alters rheological properties of the copolymer. J Agric Food Chem. 2014;62:9128–36.

    Article  CAS  Google Scholar 

  46. Spizzirri UG, Iemma F, Puoci F, Cirillo G, Curcio M, Parisi OI, et al. Synthesis of antioxidant polymers by grafting of gallic acid and catechin on gelatin. Biomacromolecules. 2009;10:1923–30.

    Article  CAS  Google Scholar 

  47. Prodpran T, Benjakul S, Phatcharat S. Effect of phenolic compounds on protein cross-linking and properties of film from fish myofibrillar protein. Int J Biol Macromol Elsevier B V. 2012;51:774–82.

    Article  CAS  Google Scholar 

  48. Aewsiri T, Benjakul S, Visessanguan W, Eun JB, Wierenga PA, Gruppen H. Antioxidative activity and emulsifying properties of cuttlefish skin gelatin modified by oxidised phenolic compounds. Food Chem Elsevier Ltd. 2009;117:160–8.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Mr. S.L. Gadge (Department of Metallurgical & Materials Engineering, VNIT Nagpur) for his constant support and motivation for the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajeet K. Srivastav.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hastak, V., Bandi, S., Kashyap, S. et al. Antioxidant efficacy of chitosan/graphene functionalized superparamagnetic iron oxide nanoparticles. J Mater Sci: Mater Med 29, 154 (2018). https://doi.org/10.1007/s10856-018-6163-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10856-018-6163-0

Navigation