Skip to main content
Log in

Dual-crosslinked homogeneous alginate microspheres for mesenchymal stem cell encapsulation

  • Biomaterials Synthesis and Characterization
  • Original Research
  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

A smart hydrogel material was used in combination with custom microfluidic devices (MFDs) to create microspheres for human mesenchymal stem cell (MSC) encapsulation. Methods for fabricating homogeneous stimuli-responsive microspheres for MSC encapsulation and cell delivery have gained interest to increase viability and manipulate microencapsulation within microspheres 10–1000 µm in diameter. Herein, MFDs were combined with non-toxic smart hydrogel materials to tune both the size and mechanics of the microspheres. Traditional hydrogels have a single input/stimulus for crosslinking, utilize potentially toxic ultraviolet radiation, and fail to mimic surrounding musculoskeletal tissue mechanics. Thus, it is highly beneficial to encapsulate MSCs inside a mechanically-stable microsphere made from naturally-derived materials. The objectives of this research were to optimize microsphere fabrication techniques using custom microfluidic devices (MFDs), and to encapsulate viable MSCs within visible-light crosslinked smart-alginate microspheres, with tunable mechanical properties. Microsphere production was characterized optically, and MSC viability, post-encapsulation, was verified using a standard florescence assay. Cell viability was maintained in chemically-modified alginate homogenous microspheres post encapsulation, and after subsequent crosslinking via green light exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Fertah M, Belfkira A, Taourirte M, Brouillette F. Extraction and characterization of sodium alginate from moroccan laminaria digitata brown seaweed. Arab J Chem. 2014;10:S3707–S3714.

    Article  CAS  Google Scholar 

  2. Chee S-Y, Wong P-K, Wong C-L. Extraction and characterisation of alginate from brown seaweeds (Fucales, Phaeophyceae) collected from Port Dickson, Peninsular Malaysia. J Appl Phycol. 2011;23:191–6.

    Article  Google Scholar 

  3. Hua S, Wang A. Synthesis, characterization and swelling behaviors of sodium alginate-g-poly (acrylic acid)/sodium humate superabsorbent. Carbohydr Polym. 2009;75:79–84.

    Article  CAS  Google Scholar 

  4. Rioux L-E, Turgeon SL, Beaulieu M. Characterization of polysaccharides extracted from brown seaweeds. Carbohydr Polym. 2007;69:530–7.

    Article  CAS  Google Scholar 

  5. Chou AI, Akintoye SO, Nicoll SB. Photo-crosslinked alginate hydrogels support enhanced matrix accumulation by nucleus pulposus cells in vivo. Osteoarthr Cartil. 2009;17:1377–84.

    Article  CAS  Google Scholar 

  6. Sabra W, Zeng A-P, Deckwer W-D. Bacterial alginate: physiology, product quality and process aspects. Appl Microbiol Biotechnol. 2001;56:315–25.

    Article  CAS  Google Scholar 

  7. Kühbeck D, Mayr J, Häring M, Hofmann M, Quignard F, Díaz DD. Evaluation of the nitroaldol reaction in the presence of metal ion-crosslinked alginates. New J Chem. 2015;39:2306–15.

    Article  CAS  Google Scholar 

  8. Rhim J-W. Physical and mechanical properties of water resistant sodium alginate films. LWT-Food Sci Technol. 2004;37:323–30.

    Article  CAS  Google Scholar 

  9. Yang J-S, Xie Y-J, He W. Research progress on chemical modification of alginate: a review. Carbohydr Polym. 2011;84:33–9.

    Article  CAS  Google Scholar 

  10. Lee KY, Mooney DJ. Alginate: properties and biomedical applications. Progress Polym Sci. 2012;37:106–26.

    Article  CAS  Google Scholar 

  11. Möller L, Krause A, Dahlmann J, Gruh I, Kirschning A, Dräger G. Preparation and evaluation of hydrogel-composites from methacrylated hyaluronic acid, alginate, and gelatin for tissue engineering. Int J Artif Organs. 2011;34:93–102.

    Article  CAS  Google Scholar 

  12. Zhao X, Huebsch N, Mooney DJ, Suo Z. Stress-relaxation behavior in gels with ionic and covalent crosslinks. J Appl Phys. 2010;107:063509.

    Article  CAS  Google Scholar 

  13. Charron PN, Fenn SL, Poniz A, Floreani RA. Mechanical properties and failure analysis of visible light crosslinked alginate-based tissue sealants. J Mech Behav Biomed Mater. 2016;59:314–21.

    Article  Google Scholar 

  14. Smeds KA, Grinstaff MW. Photocrosslinkable polysaccharides for in situ hydrogel formation. J Biomed Mater Res. 2001;54:115–21.

    Article  CAS  Google Scholar 

  15. Bahney CS, Lujan TJ, Hsu CW, Bottlang M, West JL, Johnstone B. Visible light photoinitiation of mesenchymal stem cell-laden bioresponsive hydrogels. Eur Cell Mater. 2011;22:43–55.

    Article  CAS  Google Scholar 

  16. Rojas MT, Koeniger R, Stoddart JF, Kaifer AE. Supported monolayers containing preformed binding sites. Synthesis and interfacial binding properties of a thiolated. beta.-cyclodextrin derivative. J Am Chem Soc. 1995;117:336–43.

    Article  CAS  Google Scholar 

  17. Wang X, Brusseau ML. Solubilization of some low-polarity organic compounds by hydroxypropyl-. beta.-cyclodextrin. Environ Sci Technol. 1993;27:2821–5.

    Article  CAS  Google Scholar 

  18. Bibby A, Mercier L. Adsorption and separation of water-soluble aromatic molecules by cyclodextrin-functionalized mesoporous silica. Green Chem. 2003;5:15–9.

    Article  CAS  Google Scholar 

  19. Catena GC, Bright FV. Thermodynamic study on the effects of. beta.-cyclodextrin inclusion with anilinonaphthalenesulfonates. Anal Chem. 1989;61:905–9.

    Article  CAS  Google Scholar 

  20. Rossow T, Lienemann PS, Mooney DJ. Cell microencapsulation by droplet microfluidic templating. Macromol Chem Phys. 2017;218:1600380:1–1600380:14.

    Article  CAS  Google Scholar 

  21. Velasco D, Tumarkin E, Kumacheva E. Microfluidic encapsulation of cells in polymer microgels. Small. 2012;8:1633–42.

    Article  CAS  Google Scholar 

  22. Mack, CA. Fundamental principles of optical lithography: the science of microfabrication. Lithography. 477–482 (John Wiley & Sons 2017).

  23. Fenn SL, Floreani RA. Visible light crosslinking of methacrylated hyaluronan hydrogels for injectable tissuerepair. J Biomedical Mater Res Part B: Appl Biomater. 2015;104(6):1229–1236.

    Article  CAS  Google Scholar 

  24. Charron PN, Fenn SL, Poniz A, Floreani RA. Mechanical properties and failure analysis of visible light crosslinked alginate-based tissue sealants. J Mech Behav Biomed Mater. 2016;59:314–21.

    Article  Google Scholar 

  25. Miao T, Fenn SL, Charron PN, Floreani RA. Self-healing and thermoresponsive dual-cross-linked alginate hydrogels based on supramolecular inclusion complexes. Biomacromolecules. 2015;16:3740–50.

    Article  CAS  Google Scholar 

  26. Fenn SL, Miao T, Scherrer RM, Floreani RA. Dual-cross-linked methacrylated alginate sub-microspheres for intracellular chemotherapeutic delivery. ACS Appl Mater Interfaces. 2016;8:17775–83.

    Article  CAS  Google Scholar 

  27. Fenn SL, Floreani RA. Visible light crosslinking of methacrylated hyaluronan hydrogels for injectable tissue repair. J Biomed Mater Res B Appl Biomater. 2016;104:1229–36.

    Article  CAS  Google Scholar 

  28. Miao T, Fenn SL, Charron PN, Floreani RA. Self-healing and thermoresponsive dual-cross-linked alginate hydrogels based on supramolecular inclusion complexes. Biomacromolecules. 2015;16:3740–50.

    Article  CAS  Google Scholar 

  29. Nettles DL, Vail TP, Morgan MT, Grinstaff MW, Setton LA. Photocrosslinkable hyaluronan as a scaffold for articular cartilage repair. Ann Biomed Eng. 2004;32:391–7.

    Article  Google Scholar 

  30. Park YD, Tirelli N, Hubbell JA. Photopolymerized hyaluronic acid-based hydrogels and interpenetrating networks. Biomaterials. 2003;24:893–900.

    Article  CAS  Google Scholar 

  31. del Campo A, Greiner C. “SU-8: a photoresist for high-aspect-ratio and 3D submicron lithography.” J Micromech Microeng. 2007;17.6:R81.

    Article  CAS  Google Scholar 

  32. Jeon O, Bouhadir KH, Mansour JM, Alsberg E. Photocrosslinked alginate hydrogels with tunable biodegradation rates and mechanical properties. Biomaterials. 2009;30:2724–34.

    Article  CAS  Google Scholar 

  33. Jeon O, Samorezov JE, Alsberg E. Single and dual crosslinked oxidized methacrylated alginate/PEG hydrogels for bioadhesive applications. Acta Biomater. 2014;10:47–55.

    Article  CAS  Google Scholar 

  34. Jeon O, Wolfson DW, Alsberg E. In-situ formation of growth-factor-loaded coacervate microparticle-embedded hydrogels for directing encapsulated stem cell fate. Adv Mater. 2015;27:2216–23.

    Article  CAS  Google Scholar 

  35. Kang LH, Armstrong PA, Lee LJ, Duan B, Kang KH, Butcher JT. Optimizing photo-encapsulation viability of heart valve cell types in 3d printable composite hydrogels. Ann Biomed Eng. 2016;45(2):360–377.

    Article  Google Scholar 

  36. Mignon A, Devisscher D, Graulus GJ, Stubbe B, Martins J, Dubruel P et al. Combinatory approach of methacrylated alginate and acid monomers for concrete applications. Carbohydr Polym. 2017;155:448–55.

    Article  CAS  Google Scholar 

  37. Moller L, Krause A, Dahlmann J, Gruh I, Kirschning A, Drager G. Preparation and evaluation of hydrogel-composites from methacrylated hyaluronic acid, alginate, and gelatin for tissue engineering. Int J Artif Organs. 2011;34:93–102.

    Article  CAS  Google Scholar 

  38. Mu C, Sakai S, Ijima H, Kawakami K. Preparation of cell-enclosing microcapsules through photopolymerization of methacrylated alginate solution triggered by irradiation with visible light. J Biosci Bioeng. 2010;109:618–21.

    Article  CAS  Google Scholar 

  39. Samorezov JE, Morlock CM, Alsberg E. Dual ionic and photo-crosslinked alginate hydrogels for micropatterned spatial control of material properties and cell behavior. Bioconjug Chem. 2015;26:1339–47.

    Article  CAS  Google Scholar 

  40. Wagner DE, Fenn SL, Bonenfant NR, Marks ER, Borg Z, Saunders P et al. Design and synthesis of an artificial pulmonary pleura for high throughput studies in acellular human lungs. Cell Mol Bioeng. 2014;7:184–95.

    Article  Google Scholar 

  41. Wang S, Jeon O, Shankles PG, Liu Y, Alsberg E, Retterer ST et al. In-situ photopolymerization of monodisperse and discoid oxidized methacrylated alginate microgels in a microfluidic channel. Biomicrofluidics. 2016;10:011101.

    Article  CAS  Google Scholar 

  42. Nie Z, Seo M, Xu S, Lewis PC, Mok M, Kumacheva E et al. Emulsification in a microfluidic flow-focusing device: effect of the viscosities of the liquids. Microfluid Nanofluidics. 2008;5:585–94.

    Article  CAS  Google Scholar 

  43. Chen JM, Kuo M-C, Liu C-P. Control of droplet generation in flow focing microfluidic device with a converging-diveging nozzle-shaped secion. Japn J Appl Phys. 2011;50:107301:1–107301:7.

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge members of the Engineered Biomaterials Research Laboratory at the University of Vermont, for their support and advice. This work was supported by the College of Engineering and Mathematical Sciences at the University of Vermont.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rachael A. Floreani.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Etter, J.N., Karasinski, M., Ware, J. et al. Dual-crosslinked homogeneous alginate microspheres for mesenchymal stem cell encapsulation. J Mater Sci: Mater Med 29, 143 (2018). https://doi.org/10.1007/s10856-018-6151-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10856-018-6151-4

Navigation