Skip to main content

Advertisement

Log in

Effect of strontium substitution on the cytocompatibility and 3-D scaffold structure for the xSrO–(10−x) MgO–60SiO2–20CaO–10 P2O5 (2 ≤ x ≤ 8) sol–gel glasses

  • Biomaterials Synthesis and Characterization
  • Original Research
  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

In the present study, novel glasses xSrO–(10−x) MgO–60SiO2–20CaO–10 P2O5 (2 ≤ x ≤ 8, in steps of 2) are synthesized via sol–gel method. The current work focusses on the evaluation of mechanical, physical and biocompatible properties for sol–gel glasses. The pore size and surface area of these glasses were studied using BET analysis. The structural aspect of the glasses/glass ceramics was studied by XRD and Raman spectroscopy. The cytotoxicity assays were conducted for MG63 human osteosarcoma cell line. Furthermore, the as prepared glasses were used for the fabrication of 3-D porous scaffolds via polymer replication method. The loaded green bodies have been sintered at 700, 800 and 900 °C and were kept for 6 h to densify the glass network. The effect of sintering temperature on the structure and properties of as prepared scaffolds were analyzed via scanning electron microscopy (SEM) and porosity calculations.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Jones JR, Ehrenfried LM, Hench LL. Optimising bioactive glass scaffolds for bone tissue engineering. Biomaterials. 2006;27:964–73.

    Article  Google Scholar 

  2. Fu Q, Rahaman MN, Bal BS, Brown RF, Day DE. Mechanical and in vitro performance of 13-93 bioactive glass scaffolds prepared by a polymer foam replication technique. Acta Biomater. 2008;4:1854–64.

    Article  Google Scholar 

  3. Bellucci D, Sola A, Cannillo V. A revised replication method for bioceramic scaffolds. Bioceram Devolp App. 2011;1:1–8.

    Article  Google Scholar 

  4. Deliormanli AM, Rahaman MN. Direct-write assembly of silicate and borate bioactive glass scaffolds for bone rep air. J Eur Ceram Soc. 2012;32:3637–46.

    Article  Google Scholar 

  5. Baino F, Brovarone CV. Three-dimensional glass-derived scaffolds for bone tissue engineering: current trends and forecasts for the future. J Biomed Mater Res. 2010;97A:514–35.

    Article  Google Scholar 

  6. Jahan K, Tabrizian M. Composite biopolymers for bone regeneration enhancement in bony defects. Biomater Sci. 2016;4:25–39.

    Article  Google Scholar 

  7. Langer R, Tirrell DA. Designing materials for biology and medicine. Nature. 2004;428:487–92.

    Article  Google Scholar 

  8. Langer R, Vacanti JP. Tissue engineering. Science. 1993;260:920–6.

    Article  Google Scholar 

  9. Vacanti CA. History of tissue engineering and a glimpse into its future. Tissue Eng. 2006;12:1137–42.

    Article  Google Scholar 

  10. Rahaman MN, Day DE, Bal BS, Fu Q, Jung SB, Bonewald LF, Tomsia AP. Bioactive glass in tissue engineering. Acta Biomater. 2011;7:2355–73.

    Article  Google Scholar 

  11. Kaur G, Pandey OP, Singh K, Homa D, Scott B, Pickrell G. A review of bioactive glasses: their structure, properties, fabrication and apatite formation. J Biomed Mater Res A 2013; 254-74.

  12. Hench LL, Splinter RJ, Allen WC, Greenlee TK. Bonding mechanisms at the interface of ceramic prosthetic materials. J Biomed Mater Res. 1972;2:117–41.

    Google Scholar 

  13. Kaur G, Pickrell G, Sriranganathan N, Kumar V, Homa D. Review and state of the art: sol-gel and melt quenched bioactive glasses for tissue engineering. J Biomed Mater Res B Appl Biomater. 2016;104:1248–75.

    Article  Google Scholar 

  14. Fu Q, Saiz E, Rahaman MN, Tomisia AP. Bioactive glass scaffolds for bone tissue engineering: state of the art and future perspectives. Mater Sci Eng C Mater Biol Appl. 2011;31:1245–56.

    Article  Google Scholar 

  15. Brovarone C, Verne E, Robiglio L, Appendino P, Bassi F, Martinasso G, Muzio G, Canuto R. Acta Biomater. 2007;2:199–208.

    Article  Google Scholar 

  16. Hench LL, Wilson J. Introduction to bioceramics. World scientific Singapore, Singapore 596224; 1993.

    Book  Google Scholar 

  17. Liu X, Huang W, Fu H, Yao A, Wang D, Pan H, Lu WW. Bioactive borosilicate glass scaffolds: improvement on the strength of glass-based scaffolds for tissue engineering. J Mater Sci Mater Med. 2009;20:365–72.

    Article  Google Scholar 

  18. Brovarone CV, Verné E, Appendino P. Macroporous bioactive glass-ceramic scaffolds for tissue engineering. J Mater Sci: Mater Med. 2006;17:1069–78.

    Google Scholar 

  19. Chen Q, Baino F, Spriano S, Pugno NM, Brovarone CV. Modelling of strength-porosity relationship in glass-ceramic foam scaffolds for bone repair. J Eur Ceram Soc. 2014;34:2663–73.

    Article  Google Scholar 

  20. Brovarone CV, Miola M, Verné E. 3D glass ceramic scaffolds with antibacterial properties properties for bone grafting. Chem Eng J. 2008;137:129–36.

    Article  Google Scholar 

  21. Salinas AJ, Román J, Regi MV, Oliveira JM, Correia RN, Fernandes MH. In vitro bioactivity of glass and glass ceramics of 3CaO.P2O5-CaO.SiO2-CaO.MgO.2SiO2 system. Biomaterials. 2000;21:251–7.

    Article  Google Scholar 

  22. Murphy S, Boyd D, Moane S, Bennett M. The effect of composition on ion release from Ca–Sr–Na–Zn–Si glass bone grafts. J Mater Sci Mater Med. 2009;20:2028–35.

    Article  Google Scholar 

  23. Aina V, Perardi A, Bergandi L, Malavasi G, Menabue L, Morterra C, Ghigo D. Cytotoxicity of zinc-containing bioactive glasses in contact with human osteoblast. Chem Biol Interact. 2007;167:207–18.

    Article  Google Scholar 

  24. Kaur G, Pickrell G, Kimsawatde G, Homa D, Allbee HA, Sriranganathan N. Synthesis, cytotoxicity, and hydroxyapatite formation in 27-Tris-SBF for sol gel based CaO-P2O5-SiO2-B2O3-ZnO bioactive glasses. Sci Rep. 2014;4:1–14.

    Google Scholar 

  25. Kaur G, Pandey OP, Chudasama BN, Kumar V. Combined and individual doxorubicin/vancomycin drug loading, release kinetics and apatite formation for the CaO – CuO – P2O5 – SiO2 – B2O5 mesoporous glasses. RSC Adv 2016; 51046–56.

  26. Kaur G, Sharma P, Kumar V, Singh K. Assessment of in vitro bioactivity of SiO2 – BaO – ZnO – B2O3 – Al2O3 glasses: An Optico – analytical approach. Mater Sci and Engg. C 2012;32:1941–7.

    Article  Google Scholar 

  27. Nielsens P. The biological role of strontium. Bone. 2004;35:583–8.

    Article  Google Scholar 

  28. Lemaire H, et al. The calcium sensing receptor is involved in strontium ranelate induced osteoclast apoptosis. J Boil Chem. 2009;284:575–84.

    Article  Google Scholar 

  29. Sriranganathan D, Kanwal N, Hing KA, Hill RG. Strontium substituted bioactive glasses for tissue engineered scaffolds: the importance of octacalcium phosphate. J Mater Sci: Mater Med. 2016;27:1–10.

    Google Scholar 

  30. Lao J, Nedelec JM, Edouard J. New strontium-based bioactive glasses: physiochemical reactivity and delivering capability of biologically active dissolution products. J Mater Chem. 2009;19:2940–9.

    Article  Google Scholar 

  31. Neel EAA, Chrzanowski W, Pickup DM, O’Dell LA, Mordan NJ, Newport RJ, Smith ME, Knowles JC. Structure and properties of strontium-doped phosphate-based glasses. J R Soc Interface. 2009;6:435–46.

    Article  Google Scholar 

  32. Gorustovich AA, Steimetz T, Cabrini RL, Porto Lopez JM. Osteoconductivity of strontium-doped bioactive glass particles: a histomorphometric study in rats. Soc Biomater. 2010;92A:232–7.

    Google Scholar 

  33. Pan H, Zhao XL, Zhang X, Zhang KB, Li LC, Li ZY, Lam WM, Lu WW, Wang DP, Huang WH, Lin KL, Chang J. Strontium borate glass: potential biomaterials for bone regeneration. J R Soc Interface. 2010;7:1025–31.

    Article  Google Scholar 

  34. Nilihara K, Morena R, Hasselman DPH. Evaluation of KIc of brittle solids by the indentation method with low crack-to-indent ratios. J Mater Sci Lett. 1982;1:13–6.

    Article  Google Scholar 

  35. Anstis GR, Chantikul R, Lawn BR, Marshall DB. A critical evaluation of indentation techniques for measuring fracture toughness: I, direct crack measurements. J Am Ceram Soc. 1981;64:533–8.

    Article  Google Scholar 

  36. Adams JW, Ruh R, Mazdiyasni KS. Young's modulus, flexural strength, and fracture of yttria-stabilized zirconia versus temperature. J Am Ceram Soc. 1997;80:903–8.

    Article  Google Scholar 

  37. Baik DS, No KS, Chun JS, Yoon YJ, Cho HY. A comparative method of machinability for mica based glass-ceramics. J Mater Sci. 1995;30:1801–6.

    Article  Google Scholar 

  38. Baik DS, No KS, Chun JS, Cho HY. Effect of the aspect ratio of mica crystals and crystallinity on the microhardness and machinability of mica glass-ceramics. J Mater Process Technol. 1997;67:50–4.

    Article  Google Scholar 

  39. Leon y, Leon CA. New perspectives in mercury porosimetry. Adv Colloid Interface Sci. 1998;76-77:341–72.

    Article  Google Scholar 

  40. Kuboki Y, Takita H, Kobayashi D, Tsuruga E, Inoue M, Murata M, et al. BMP induced osteogenesis on the surface of hydroxyapatite with geometrically feasible and nonfeasible structures: topology of osteogenesis. J Biomed Mater Res. 1998;39:190–9.

    Article  Google Scholar 

  41. O’ Donnell MD, Watts SJ, Hill RG, Law RV. The effect of phosphate content on bioactivity of soda lime phosphosilicate glasses. J Mater Sci: Mater Med. 2009;20:1611–8.

    Google Scholar 

  42. Marsich L, Moimas L, Sergo V, Schmid C. Raman spectroscopic study of bioactive silica-based glasses: the role of alkali/alkali earth ratio on the non-bridging oxygen/bridging oxygen (NBO/BO) ratio. Spectroscopy. 2009;23:227–332.

    Article  Google Scholar 

  43. Pemberton JE, Latifzadeh L. Raman spectroscopy of calcium phosphate glasses with varying CaO modifier concentrations. Chem Mater. 1991;3:195–200.

    Article  Google Scholar 

  44. Moustafa YM, El-Egili K. Infrared spectra of sodium phosphate glasses. J Non- Cryst Solid. 1998;240:144–53.

    Article  Google Scholar 

  45. Lu WH, Li KD, Lu CH, Teoh LG, Wu WH, Shen YC. Synthesis and characterization of mesoporous SiO2 – CaO – P2O5 bioactive glass by sol-gel process. Mater Trans. 2013;54:791–5.

    Article  Google Scholar 

  46. Wu C, Fan W, Gelinsky M, Xiao Y, Simon P, Schulze R, Thomas D, Luo Y, Cuniberti G. Bioactive SrO-SiO2 glass with well-ordered mesopores: characterization, physiochemistry and biological properties. Acta Biomaterialia. 2011;7:1797–806.

    Article  Google Scholar 

  47. Pereira MM, Clark AE, Hench LL. Effect on the rate of hydroxyapatite formation on Gel- silica surface. J Am Ceram Soc. 1995;78:2463–8.

    Article  Google Scholar 

  48. Basu B. Toughening of Y-stabilized tetragonal zirconia ceramics. Int Mater Rev. 2005;50:239–56.

    Article  Google Scholar 

  49. Bretcanu O, Chen Q, Misra SK, Boccaccini AR, Verne E, Vitale Brovarone C. Biodegradable polymer coated 45S5 bioglass derived glass-ceramic scaffolds for bone tissue engineering. Glass Tech: Eur J Glass Sci Tech A. 2007;48:227–34.

    Google Scholar 

  50. Mencik J. Strength and fracture of glass ceramics. Glass Sci and Tech 12 (1992). Amsterdam:Elsevier.

  51. Fisher H, Schafer M, Marx R. Effect of surface roughness on flexural strength of veneer ceramics. J Dent Res. 2003;82:972–75.

    Article  Google Scholar 

  52. Buttke TM, McCubrey JA, Owen TC. Use of an aqueous soluble tetrazolium:formazan assay to measure viability and proliferation of lymphokine-dependent cell lines. J Immunol Methods. 1993;157:233–40.

    Article  Google Scholar 

  53. Berg K, Zhai L, Chen M, Kharazmi A, Owen TC. The use of a watersoluble formazan complex to quantitate the cell number and mitochondrial function of Leishmania major promastigotes. Parasitol Res. 1994;80:235–9.

    Article  Google Scholar 

  54. Oudadesse H, Dietrich E, Gal YL, Pellen P, Bureau B, Mosrafa AA, Cathelineau G. Apatite forming ability and cytocompatibility of pure and Zn doped bioactive glasses. Biomed Mater. 2011;6:035006-5

    Article  Google Scholar 

  55. Ranjan A, Pothayee N, Seleem MN, Tyler RD, Brenseke B, Sriranganathan N, Riffle JS, Kasimanickam R. Antibacterial efficacy of core-shell nanostructures encapsulating gentamicin against an in, vivo intracellular Salmonella model. Int J Nanomed  2009; 4:289–97.

  56. Mandal B, Kundu S. Cell proliferation and migration in silk fibroin 3D scaffolds. Biomaterials. 2009;30:2956–65.

    Article  Google Scholar 

  57. Lien SM, Ko LY, Huang TJ. Effect of pore size on ECM secretion and cell growth in gelatin scaffold for articular cartilage tissue engineering. Acta Biomater. 2009;5:670–9.

    Article  Google Scholar 

  58. Kuboki Y, Jin Q, Takita H. Geometry of carriers controlling phenotypic expression in BMP-induced osteogenesis and chondrogenesis. J Bone Joint Surg Am. 2001;83-A:105–15.

    Google Scholar 

  59. Garg S, Thakur S, Gupta A, Kaur G, Pandey OP. Antibacterial and anticancerous drug loading kinetics for (10-x) CuO-xZnO-20CaO-60SiO2-10P2O5 (2 ≤ x ≤ 8) mesoporous bioactive glasses. J Mater Sci: Mater Med. 2017;28:1–14.

    Google Scholar 

  60. Kaur G. Bioactive glasses: potential biomaterials for future therapy. Germany, Heidelberg: Springer, 2017.

    Book  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Mr. Aayush Gupta for his valuable suggestions. One of the author GK is thankful to University Grant Commission (UGC) under the letter no. F 15/2013-2014/PDFWM – 2013-2014-GE – PUN – 14803 (SA-II) for providing financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gurbinder Kaur or Om Prakash Pandey.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thakur, S., Garg, S., Kaur, G. et al. Effect of strontium substitution on the cytocompatibility and 3-D scaffold structure for the xSrO–(10−x) MgO–60SiO2–20CaO–10 P2O5 (2 ≤ x ≤ 8) sol–gel glasses. J Mater Sci: Mater Med 28, 89 (2017). https://doi.org/10.1007/s10856-017-5901-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10856-017-5901-z

Keywords

Navigation