Skip to main content

Advertisement

Log in

Poly(γ-glutamic acid) and poly(γ-glutamic acid)-based nanocomplexes enhance type II collagen production in intervertebral disc

  • Clinical Applications of Biomaterials
  • Original Research
  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Intervertebral disc (IVD) degeneration often leads to low back pain, which is one of the major causes of disability worldwide, affecting more than 80% of the population. Although available treatments for degenerated IVD decrease symptoms’ progression, they fail to address the underlying causes and to restore native IVD properties. Poly(γ-glutamic acid) (γ-PGA) has recently been shown to support the production of chondrogenic matrix by mesenchymal stem/stromal cells. γ-PGA/chitosan (Ch) nanocomplexes (NCs) have been proposed for several biomedical applications, showing advantages compared with either polymer alone. Hence, this study explores the potential of γ-PGA and γ-PGA/Ch NCs for IVD regeneration. Nucleotomised bovine IVDs were cultured ex vivo upon injection of γ-PGA (pH 7.4) and γ-PGA/Ch NCs (pH 5.0 and pH 7.4). Tissue metabolic activity and nucleus pulposus DNA content were significantly reduced when NCs were injected in acidic-buffered solution (pH 5.0). However, at pH 7.4, both γ-PGA and NCs promoted sulphated glycosaminoglycan production and significant type II collagen synthesis, as determined at the protein level. This study is a first proof of concept that γ-PGA and γ-PGA/Ch NCs promote recovery of IVD native matrix, opening new perspectives on the development of alternative therapeutic approaches for IVD degeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. An HS, Thonar E, Masuda K. Biological repair of intervertebral disc. Spine. 2003;28(15):S86–92.

    Google Scholar 

  2. Buckwalter JA. Spine update–aging and degeneration of the human intervertebrak disc. Spine. 1995;20(11):1307–14.

    Article  Google Scholar 

  3. Smith LJ, Nerurkar NL, Choi K-S, Harfe BD, Elliott DM. Degeneration and regeneration of the intervertebral disc: lessons from development. Dis Model Mech. 2011;4(1):31–41.

    Article  Google Scholar 

  4. Whatley BR, Wen X. Intervertebral disc (IVD): structure, degeneration, repair and regeneration. Mater Sci Eng C Mater Biol Appl. 2012;32(2):61–77.

    Article  Google Scholar 

  5. Chan SCW, Gantenbein-Ritter B. Intervertebral disc regeneration or repair with biomaterials and stem cell therapy—feasible or fiction? Swiss Med Wkly. 2012;142:w13598

    Google Scholar 

  6. Sakai D. Stem cell regeneration of the intervertebral disk. Orthop Clin North Am. 2011;42(4):555–62.

    Article  Google Scholar 

  7. Urban JPG, Roberts S. Degeneration of the intervertebral disc. Arthritis Res Ther. 2003;5(3):120–30.

    Article  Google Scholar 

  8. Boos N, Weissbach S, Rohrbach H, Weiler C, Spratt KF, Nerlich AG. Classification of age-related changes in lumbar intervertebral discs. Spine. 2002;27(23):2631–44.

    Article  Google Scholar 

  9. Adams MA, Roughley PJ. What is intervertebral disc degeneration, and what causes it?. Spine. 2006;31(18):2151–61.

    Article  Google Scholar 

  10. Kuo CK, Li W-J, Tuan RS. Cartilage and ligament tissue engineering: biomaterials, cellular interactions, and regenerative strategies. In: Ratner BD, Hoffman AS, Schoen FJ, Lemons JE, editors. Biomaterials science: an introduction to materials in medicine. 3rd ed. Oxford: Academic Press; 2012. p. 1214–36.

    Google Scholar 

  11. Richardson SM, Freemont AJ, Hoyland JA. Pathogenesis of intervertebral disc degeneration. In: Shapiro IM, Risbud MV, editors. The intervertebral disc: molecular and structural studies of the disc in health and disease. Wien: Springer; 2014. pp. 177–200.

    Chapter  Google Scholar 

  12. Karppinen J, Shen FH, Luk KDK, Andersson GBJ, Cheung KMC, Samartzis D. Management of degenerative disk disease and chronic low back pain. Orthop Clin North Am. 2011;42(4):513–28.

    Article  Google Scholar 

  13. Schoen FJ. Introduction: rebuilding human using biology and biomaterials. In: Ratner BD, Hoffman AS, Schoen FJ, Lemons JE, editors. Biomaterials science: an introduction to materials in medicine. 3rd ed. Oxford: Academic Press; 2012. p. 1119–22.

    Google Scholar 

  14. Bae WC, Masuda K. Emerging technologies for molecular therapy for intervertebral disk degeneration. Orthop Clin North Am. 2011;42(4):585–601.

    Article  Google Scholar 

  15. Yoon ST, Patel NM. Molecular therapy of the intervertebral disc. Eur Spine J. 2006;15:S379–S88.

    Article  Google Scholar 

  16. Thompson JP, Oegema TR, Bradford DS. Stimulation of mature canine intervertebral-disk by growth factors. Spine. 1991;16(3):253–60.

    Article  Google Scholar 

  17. Walsh AJL, Bradford DS, Lotz JC. In vivo growth factor treatment of degenerated intervertebral discs. Spine. 2004;29(2):156–63.

    Article  Google Scholar 

  18. Akeda K, An HS, Pichika R, Attawia M, Thonar E, Lenz ME, et al. Platelet-rich plasma (PRP) stimulates the extracellular matrix metabolism of porcine nucleus pulposus and anulus fibrosus cells cultured in alginate beads. Spine. 2006;31(9):959–66.

    Article  Google Scholar 

  19. Obata S, Akeda K, Imanishi T, Masuda K, Bae W, Morimoto R, et al. Effect of autologous platelet-rich plasma-releasate on intervertebral disc degeneration in the rabbit anular puncture model: a preclinical study. Arthritis Res Ther. 2012;14(6):R241.

  20. Ilie I, Ilie R, Mocan T, Bartos D, Mocan L. Influence of nanomaterials on stem cell differentiation: designing an appropriate nanobiointerface. Int J Nanomedicine. 2012;7:2211–25.

    Google Scholar 

  21. LaVan DA, McGuire T, Langer R. Small-scale systems for in vivo drug delivery. Nat Biotechnol. 2003;21(10):1184–91.

    Article  Google Scholar 

  22. Müller M, Kessler B, Froehlich J, Poeschla S, Torger B. Polyelectrolyte complex nanoparticles of poly(ethyleneimine) and poly(acrylic acid): preparation and applications. Polymers. 2011;3(2):762–78.

    Article  Google Scholar 

  23. Wang JJ, Zeng ZW, Xiao RZ, Xie T, Zhou GL, Zhan XR, et al. Recent advances of chitosan nanoparticles as drug carriers. Int J Nanomedicine. 2011;6:765–74.

    Google Scholar 

  24. Stuart MAC, Huck WTS, Genzer J, Müller M, Ober C, Stamm M, et al. Emerging applications of stimuli-responsive polymer materials. Nat Mater. 2010;9(2):101–13.

    Article  Google Scholar 

  25. Yang X, Jin L, Yao L, Shen FH, Shimer AL, Li X. Antioxidative nanofullerol prevents intervertebral disk degeneration. Int J Nanomedicine. 2014;9:2419–30.

    Article  Google Scholar 

  26. Liang C-z, Li H, Tao Y-q, Peng L-h, Gao J-q, Wu J-j, et al. Dual release of dexamethasone and TGF-beta 3 from polymeric microspheres for stem cell matrix accumulation in a rat disc degeneration model. Acta Biomater. 2013;9(12):9423–33.

    Article  Google Scholar 

  27. Kandel R, Santerre P, Massicotte E, Hurtig M. Tissue engineering of the intervertebral disc. In: Shapiro I, Risbud M, editors. The intervertebral disc: molecular and structural studies of the disc in health and disease. Wien: Springer; 2014. p. 417–33.

    Chapter  Google Scholar 

  28. Chang K-Y, Cheng L-W, Ho G-H, Huang Y-P, Lee Y-D. Fabrication and characterization of poly(gamma-glutamic acid)-graft-chondroitin sulfate/polycaprolactone porous scaffolds for cartilage tissue engineering. Acta Biomater. 2009;5(6):1937–47.

    Article  Google Scholar 

  29. Prescott AG, inventor; Crescent Innovations Inc., assignee. Methods for treating joint pain using poly-gamma-glutamic acid patent US 2006/0234192 A1. 2006.

  30. Antunes J, Tsaryk R, Gonçalves R, Pereira C, Landes C, Ghanaati S, et al. Poly(γ-glutamic acid) as an exogenous promoter of chondrogenic differentiation of human mesenchymal stem/stromal cells. Tissue Eng Part A. 2015;21:1869–85.

    Article  Google Scholar 

  31. Liu L-T, Huang B, Li C-Q, Zhuang Y, Wang J, Zhou Y. Characteristics of stem cells derived from the degenerated human intervertebral disc cartilage endplate. Plos One. 2011;6(10):e26285

    Article  Google Scholar 

  32. Risbud MV, Guttapalli A, Tsai T-T, Lee JY, Danielson KG, Vaccaro AR, et al. Evidence for skeletal progenitor cells in the degenerate human intervertebral disc. Spine. 2007;32(23):2537–44.

    Article  Google Scholar 

  33. Blanco JF, Graciani IF, Sanchez-Guijo FM, Muntion S, Hernandez-Campo P, Santamaria C, et al. Isolation and characterization of mesenchymal stromal cells from human degenerated nucleus pulposus comparison with bone marrow mesenchymal stromal cells from the same subjects. Spine. 2010;35(26):2259–65.

    Article  Google Scholar 

  34. Brisby H, Papadimitriou N, Brantsing C, Bergh P, Lindahl A, Henriksson HB. The presence of local mesenchymal progenitor cells in human degenerated intervertebral discs and possibilities to influence these in vitro: a descriptive study in humans. Stem Cells Dev. 2013;22(5):804–14.

    Article  Google Scholar 

  35. Henriksson HB, Thornemo M, Karlsson C, Hagg O, Junevik K, Lindahl A, et al. Identification of cell proliferation zones, progenitor cells and a potential stem cell niche in the intervertebral disc region a study in four species. Spine. 2009;34(21):2278–87.

    Article  Google Scholar 

  36. Sakai D, Nakamura Y, Nakai T, Mishima T, Kato S, Grad S, et al. Exhaustion of nucleus pulposus progenitor cells with ageing and degeneration of the intervertebral disc. Nat Commun. 2012;3:1264

    Article  Google Scholar 

  37. Hellmers F, Ferguson P, Koropatnick J, Krull R, Margaritis A. Characterization and in vitro cytotoxicity of doxorubicin-loaded gamma-polyglutamic acid-chitosan composite nanoparticles. Biochem Eng J. 2013;75:72–8.

    Article  Google Scholar 

  38. Hsieh CY, Tsai SP, Wang DM, Chang YN, Hsieh HJ. Preparation of gamma-PGA/chitosan composite tissue engineering matrices. Biomaterials. 2005;26(28):5617–23.

    Article  Google Scholar 

  39. Kang HS, Park SH, Lee YG, Son TI. Polyelectrolyte complex hydrogel composed of chitosan and poly(gamma-glutamic acid) for biological application: preparation, physical properties, and cytocompatibility. J Appl Polym Sci. 2007;103(1):386–94.

    Article  Google Scholar 

  40. Liao Z-X, Ho L-C, Chen H-L, Peng S-F, Hsiao C-W, Sung H-W. Enhancement of efficiencies of the cellular uptake and gene silencing of chitosan/siRNA complexes via the inclusion of a negatively charged poly(γ-glutamic acid). Biomaterials. 2010;31(33):8780–8.

    Article  Google Scholar 

  41. Tsao CT, Chang CH, Lin YY, Wu MF, Wang JL, Han JL, et al. Antibacterial activity and biocompatibility of a chitosan-gamma-poly(glutamic acid) polyelectrolyte complex hydrogel. Carbohydr Res. 2010;345(12):1774–80.

    Article  Google Scholar 

  42. Chang H-H, Wang Y-L, Chiang Y-C, Chen Y-L, Chuang Y-H, Tsai S-J, et al. A novel chitosan-gamma PGA polyelectrolyte complex hydrogel promotes early new bone formation in the alveolar socket following tooth extraction. PLos One. 2014;9(3):e92362

    Article  Google Scholar 

  43. Tsao CT, Hang CH, Lin YY, Wu MF, Wang JL, Young TH, et al. Evaluation of chitosan/-poly(glutamic acid) polyelectrolyte complex for wound dressing materials. Carbohydr Polym. 2011;84(2):812–9.

    Article  Google Scholar 

  44. Lin YH, Chen CT, Liang HF, Kulkarni AR, Lee PW, Chen CH, et al. Novel nanoparticles for oral insulin delivery via the paracellular pathway. Nanotechnology. 2007;18(10):105102

    Article  Google Scholar 

  45. Sonaje K, Lin K-J, Wey S-P, Lin C-K, Yeh T-H, Nguyen H-N, et al. Biodistribution, pharmacodynamics and pharmacokinetics of insulin analogues in a rat model: oral delivery using pH-responsive nanoparticles vs. subcutaneous injection. Biomaterials. 2010;31(26):6849–58.

    Article  Google Scholar 

  46. Sonaje K, Lin Y-H, Juang J-H, Wey S-P, Chen C-T, Sung H-W. In vivo evaluation of safety and efficacy of self-assembled nanoparticles for oral insulin delivery. Biomaterials. 2009;30(12):2329–39.

    Article  Google Scholar 

  47. Tang D-W, Hu S-H, Ho Y-C, Mi F-L, Kuo P-L, Sung H-W. Heparinized chitosan/poly(γ-glutamic acid) nanoparticles for multi-functional delivery of fibroblast growth factor and heparin. Biomaterials. 2010;31(35):9320–32.

    Article  Google Scholar 

  48. Tang D-W, Yu S-H, Ho Y-C, Huang B-Q, Tsai G-J, Hsieh H-Y, et al. Characterization of tea catechins-loaded nanoparticles prepared from chitosan and an edible polypeptide. Food Hydrocoll. 2013;30(1):33–41.

    Article  Google Scholar 

  49. Liu Y, Sun Y, Xu Y, Feng H, Fu S, Tang J, et al. Preparation and evaluation of lysozyme-loaded nanoparticles coated with poly-gamma-glutamic acid and chitosan. Int J Biol Macromol. 2013;59:201–7.

    Article  Google Scholar 

  50. Hajdu I, Bodnar M, Trencsenyi G, Marian T, Vamosi G, Kollar J, et al. Cancer cell targeting and imaging with biopolymer-based nanodevices. Int J Pharm. 2013;441(1-2):234–41.

    Article  Google Scholar 

  51. Liao Z-X, Hsiao C-W, Ho Y-C, Chen H-L, Sung H-W. Disulfide bond-conjugated dual PEGylated siRNAs for prolonged multiple gene silencing. Biomaterials. 2013;34(28):6930–7.

    Article  Google Scholar 

  52. Lin YH, Mi FL, Chen CT, Chang WC, Peng SF, Liang HF, et al. Preparation and characterization of nanoparticles shelled with chitosan for oral insulin delivery. Biomacromolecules. 2007;8(1):146–52.

    Article  Google Scholar 

  53. Moon H-J, Lee J-S, Talactac MR, Chowdhury MYE, Kim J-H, Park M-E, et al. Mucosal immunization with recombinant influenza hemagglutinin protein and poly gamma-glutamate/chitosan nanoparticles induces protection against highly pathogenic influenza A virus. Vet Microbiol. 2012;160(3-4):277–89.

    Article  Google Scholar 

  54. Gonçalves RM, Pereira ACL, Pereira IO, Oliveira MJ, Barbosa MA. Macrophages response to chitosan/poly-(gamma-glutamic acid) nanoparticles carrying an anti-inflammatory drug. J Mater Sci Mat Med. 2015;26(4):167

    Article  Google Scholar 

  55. Pereira CL, Antunes JC, Gonçalves RM, Ferreira-da-Silva F, Barbosa MA. Biosynthesis of highly pure poly-gamma-glutamic acid for biomedical applications. J Mater Sci Mater Med. 2012;23(7):1583–91.

    Article  Google Scholar 

  56. Pereira CL, Gonçalves RM, Peroglio M, Pattappa G, D’Este M, Eglin D, et al. The effect of hyaluronan-based delivery of stromal cell-derived factor-1 on the recruitment of MSCs in degenerating intervertebral discs. Biomaterials. 2014;35(28):8144–53.

    Article  Google Scholar 

  57. Peroglio M, Eglin D, Benneker LM, Alini M, Grad S. Thermoreversible hyaluronan-based hydrogel supports in vitro and ex vivo disc-like differentiation of human mesenchymal stem cells. Spine J. 2013;13(11):1627–39.

    Article  Google Scholar 

  58. Antunes JC, Pereira CL, Molinos M, Ferreira-da-Silva F, Dessí M, Gloria A, et al. Layer-by-layer self-assembly of chitosan and poly(gamma-glutamic acid) into polyelectrolyte complexes. Biomacromolecules. 2011;12(12):4183–95.

    Article  Google Scholar 

  59. U.S. Department of Health and Human Services/Food and Drug Administration/Center for Drug Evaluation and Research/Center for Biologics Evaluation and Research/Center for Veterinary Medicine/Center for Devices and Radiological Health/Office of Regulatory Affairs. Guidance for industry: pyrogen and endotoxins testing: questions and answers, 2012.

  60. Juenger S, Gantenbein-Ritter B, Lezuo P, Alini M, Ferguson SJ, Ito K. Effect of limited nutrition on in situ intervertebral disc cells under simulated-physiological loading. Spine. 2009;34(12):1264–71.

    Article  Google Scholar 

  61. Chan SCW, Walser J, Kaeppeli P, Shamsollahi MJ, Ferguson SJ, Gantenbein-Ritter B. Region specific response of intervertebral disc cells to complex dynamic loading: an organ culture study using a dynamic torsion-compression bioreactor. Plos One. 2013;8(8):e72489.

  62. Haschtmann D, Stoyanov JV, Ferguson SJ. Influence of diurnal hyperosmotic loading on the metabolism and matrix gene expression of a whole-organ intervertebral disc model. J Orthop Res. 2006;24(10):1957–66.

    Article  Google Scholar 

  63. Illien-Juenger S, Gantenbein-Ritter B, Grad S, Lezuo P, Ferguson SJ, Alini M, et al. The combined effects of limited nutrition and high-frequency loading on intervertebral discs with endplates. Spine. 2010;35(19):1744–52.

    Article  Google Scholar 

  64. Paul CPL, Zuiderbaan HA, Doulabi BZ, van der Veen AJ, van de Ven PM, Smit TH, et al. Simulated-physiological loading conditions preserve biological and mechanical properties of caprine lumbar intervertebral discs in ex vivo culture. Plos One. 2012;7(3):e33147

    Article  Google Scholar 

  65. Wang S-L, Yu Y-L, Tang C-L, Lv F-Z. Effects of TGF-beta 1 and IL-1 beta on expression of ADAMTS enzymes and TIMP-3 in human intervertebral disc degeneration. Exp Ther Med. 2013;6(6):1522–6.

    Google Scholar 

  66. Zhang R, Ruan D, Zhang C. Effects of TGF-beta1 and IGF-1 on proliferation of human nucleus pulposus cells in medium with different serum concentrations. J Orthop Surg Res. 2006;1:9

    Article  Google Scholar 

  67. Nishida K, Kang JD, Gilbertson LG, Moon SH, Suh JK, Vogt MT, et al. Modulation of the biologic activity of the rabbit intervertebral disc by gene therapy: an in vivo study of adenovirus-mediated transfer of the human transforming growth factor beta 1 encoding gene. Spine. 1999;24(23):2419–25.

    Article  Google Scholar 

  68. He E, Cui JH, Li C, Tang C, Kim I-S, Kim Y-W, et al. The combined effects of transforming growth factor-beta and basic fibroblast growth factor on the human degenerated nucleus pulposus cells in monolayer culture. J Tissue Eng Regen Med. 2013;10(3):146–54.

    Article  Google Scholar 

  69. Lin YH, Chung CK, Chen CT, Liang HF, Chen SC, Sung HW. Preparation of nanoparticles composed of chitosan/poly-gamma-glutamic acid and evaluation of their permeability through Caco-2 cells. Biomacromolecules. 2005;6(2):1104–12.

    Article  Google Scholar 

  70. Hajdu I, Bodnar M, Filipcsei G, Hartmann JF, Daroczi L, Zrinyi M, et al. Nanoparticles prepared by self-assembly of chitosan and poly-gamma-glutamic acid. Colloid Polym Sci. 2008;286(3):343–50.

    Article  Google Scholar 

  71. Sogias IA, Khutoryanskiy VV, Williams AC. Exploring the factors affecting the solubility of chitosan in water. Macromol Chem Phys. 2010;211(4):426–33.

    Article  Google Scholar 

  72. Berger J, Reist M, Mayer JM, Felt O, Gurny R. Structure and interactions in chitosan hydrogels formed by complexation or aggregation for biomedical applications. Eur J Pharm Biopharm. 2004;57(1):35–52.

    Article  Google Scholar 

  73. Nair LS, Laurencin CT. Biodegradable polymers as biomaterials. Prog Polym Sci. 2007;32(8-9):762–98.

    Article  Google Scholar 

  74. Rinaudo M. Chitin and chitosan: properties and applications. Prog Polym Sci. 2006;31(7):603–32.

    Article  Google Scholar 

  75. Suh JKF, Matthew HWT. Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering: a review. Biomaterials. 2000;21(24):2589–98.

    Article  Google Scholar 

  76. Di Martino A, Sittinger M, Risbud MV. Chitosan: a versatile biopolymer for orthopaedic tissue-engineering. Biomaterials. 2005;26(30):5983–90.

    Article  Google Scholar 

  77. Muzzarelli RAA, Greco F, Busilacchi A, Sollazzo V, Gigante A. Chitosan, hyaluronan and chondroitin sulfate in tissue engineering for cartilage regeneration: a review. Carbohydr Polym. 2012;89(3):723–39.

    Article  Google Scholar 

  78. Alini M, Roughley PJ, Antoniou J, Stoll T, Aebi M. A biological approach to treating disc degeneration: not for today, but maybe for tomorrow. Eur Spine J. 2002;11:S215–S20.

    Google Scholar 

  79. Cheng Y-H, Yang S-H, Lin F-H. Thermosensitive chitosan-gelatin-glycerol phosphate hydrogel as a controlled release system of ferulic acid for nucleus pulposus regeneration. Biomaterials. 2011;32(29):6953–61.

    Article  Google Scholar 

  80. Mwale F, Wertheimer MR, Antoniou J. Novel nitrogen rich polymers and chitosan for tissue engineering of intervertebral discs. Adv Sci Technol. 2008;57:117–24.

    Article  Google Scholar 

  81. Renani HB, Ghorbani M, Beni BH, Karimi Z, Mirhosseini M, Zarkesh H, et al. Determination and comparison of specifics of nucleus pulposus cells of human intervertebral disc in alginate and chitosan-gelatin scaffolds. Adv Biomed Res. 2012;1:81

    Google Scholar 

  82. Roughley P, Hoemann C, DesRosiers E, Mwale F, Antoniou J, Alini M. The potential of chitosan-based gels containing intervertebral disc cells for nucleus pulposus supplementation. Biomaterials. 2006;27(3):388–96.

    Article  Google Scholar 

  83. Alini M, Eisenstein SM, Ito K, Little C, Kettler AA, Masuda K, et al. Are animal models useful for studying human disc disorders/degeneration? Eur Spine J. 2008;17(1):2–19.

    Article  Google Scholar 

  84. Anderson DG, Albert TJ, Fraser JK, Risbud M, Wuisman P, Meisel HJ, et al. Cellular therapy for disc degeneration. Spine. 2005;30(17):S14–S9.

    Article  Google Scholar 

  85. Huang Y-C, Leung VYL, Lu WW, Luk KDK. The effects of microenvironment in mesenchymal stem cell-based regeneration of intervertebral disc. Spine J. 2013;13(3):352–62.

    Article  Google Scholar 

  86. Oshima H, Ishihara H, Urban JPG, Tsuji H. The use of coccygeal disks to study intervertebral disc metabolism. J Orthop Res. 1993;11(3):332–8.

    Article  Google Scholar 

  87. Bibby SRS, Jones DA, Ripley RM, Urban JPG. Metabolism of the intervertebral disc: Effects of low levels of oxygen, glucose, and pH on rates of energy metabolism of bovine nucleus pulposus cells. Spine. 2005;30(5):487–96.

    Article  Google Scholar 

  88. Peng S-F, Yang M-J, Su C-J, Chen H-L, Lee P-W, Wei M-C, et al. Effects of incorporation of poly(gamma-glutamic acid) in chitosan/DNA complex nanoparticles on cellular uptake and transfection efficiency. Biomaterials. 2009;30(9):1797–808.

    Article  Google Scholar 

  89. Liao ZX, Peng SF, Chiu YL, Hsiao CW, Liu HY, Lim WH, et al. Enhancement of efficiency of chitosan-based complexes for gene transfection with poly(gamma-glutamic acid) by augmenting their cellular uptake and intracellular unpackage. J Control Release. 2014;193:304–15.

    Article  Google Scholar 

  90. Peng SF, Tseng MT, Ho YC, Wei MC, Liao ZX, Sung HW. Mechanisms of cellular uptake and intracellular trafficking with chitosan/DNA/poly(gamma-glutamic acid) complexes as a gene delivery vector. Biomaterials. 2011;32(1):239–48.

    Article  Google Scholar 

  91. Phanse Y, Ramer-Tait AE, Friend SL, Carrillo-Conde B, Lueth P, Oster CJ, et al. Analyzing cellular internalization of nanoparticles and bacteria by multi-spectral imaging flow cytometry. J Vis Exp. 2012;(64):3884.

  92. Horner HA, Urban JPG. 2001 volvo award winner in basic science studies: Effect of nutrient supply on the viability of cells from the nucleus pulposus of the intervertebral disc. Spine. 2001;26(23):2543–9.

    Article  Google Scholar 

  93. Razaq S, Urban JPG, Wilkins RJ. Regulation of intracellular pH by bovine intervertebral disc cells. Cell Physiol Biochem. 2000;10(1-2):109–15.

    Article  Google Scholar 

  94. Mavrogonatou E, Kletsas D. Differential response of nucleus pulposus intervertebral disc cells to high salt, sorbitol, and urea. J Cell Physiol. 2012;227(3):1179–87.

    Article  Google Scholar 

  95. Mavrogonatou E, Kletsas D. High osmolality activates the G1 and G2 cell cycle checkpoints and affects the DNA integrity of nucleus pulposus intervertebral disc cells triggering an enhanced DNA repair response. DNA Repair. 2009;8(8):930–43.

    Article  Google Scholar 

  96. Gruber HE, Ingram JA, Norton HJ, Hanley EN Jr. Senescence in cells of the aging and degenerating intervertebral disc—Immunolocalization of senescence-associated beta-galactosidase in human and sand rat discs. Spine. 2007;32(3):321–7.

    Article  Google Scholar 

  97. Kim K-W, Chung H-N, Ha K-Y, Lee J-S, Kim Y-Y. Senescence mechanisms of nucleus pulposus chondrocytes in human intervertebral discs. Spine J. 2009;9(8):658–66.

    Article  Google Scholar 

  98. Le Maitre CL, Freemont AJ, Hoyland JA. Accelerated cellular senescence in degenerate intervertebral discs: a possible role in the pathogenesis of intervertebral disc degeneration. Arthritis Res Ther. 2007;9(3):R45.

  99. Roberts S, Evans EH, Kletsas D, Jaffray DC, Eisenstein SM. Senescence in human intervertebral discs. Eur Spine J. 2006;15:S312–S6.

    Article  Google Scholar 

  100. Gantenbein B, Grunhagen T, Lee CR, van Donkelaar CC, Alini M, Ito K. An in vitro organ culturing system for intervertebral disc explants with vertebral endplates—a feasibility study with ovine caudal discs. Spine. 2006;31(23):2665–73.

    Article  Google Scholar 

  101. Illien-Juenger S, Pattappa G, Peroglio M, Benneker LM, Stoddart MJ, Sakai D, et al. Homing of mesenchymal stem cells in induced degenerative intervertebral discs in a whole organ culture system. Spine. 2012;37(22):1865–73.

    Article  Google Scholar 

  102. Furtwaengler T, Chan SCW, Bahrenberg G, Richards PJ, Gantenbein-Ritter B. Assessment of the matrix degenerative effects of MMP-3, ADAMTS-4, and HTRA1, injected into a bovine intervertebral disc organ culture model. Spine. 2013;38(22):E1377–E87.

    Article  Google Scholar 

  103. Spencer GJ, McGrath CJ, Genever PG. Current perspectives on NMDA-type glutamate signalling in bone. Int J Biochem Cell Biol. 2007;39(6):1089–104.

    Article  Google Scholar 

  104. Piepoli T, Mennuni L, Zerbi S, Lanza M, Rovati LC, Caselli G. Glutamate signaling in chondrocytes and the potential involvement of NMDA receptors in cell proliferation and inflammatory gene expression. Osteoarthr Cartil. 2009;17(8):1076–83.

    Article  Google Scholar 

  105. Salter DM, Wright MO, Millward-Sadler SJ. NMDA receptor expression and roles in human articular chondrocyte mechanotransduction. Biorheology. 2004;41(3-4):273–81.

    Google Scholar 

  106. Li HT, Li XH, Liu GZ, Chen JS, Weng XP, Liu FY, et al. Bauhinia championi (Benth.) Benth. polysaccharides upregulate Wnt/beta-catenin signaling in chondrocytes. Int J Mol Med. 2013;32(6):1329–36.

    Google Scholar 

  107. Weng XP, Lin PD, Liu FY, Chen JS, Li HT, Huang LC, et al. Achyranthes bidentata polysaccharides activate the Wnt/beta-catenin signaling pathway to promote chondrocyte proliferation. Int J Mol Med. 2014;34(4):1045–50.

    Google Scholar 

Download references

Acknowledgments

This work was financed by FEDER funds through the Programa Operacional Factores de Competitividade—COMPETE, by Portuguese funds through FCT—Fundação para a Ciência e a Tecnologia in the framework of the project PEst-C/SAU/ LA0002/2011. Catarina Leite Pereira and Graciosa Teixeira are grateful to FCT for their Ph.D. grants (SFRH/BD/85779/2012, SFRH/BD/88429/2012) and Joana Caldeira for her Post-Doc grant (SFRH/BPD/78187/2011). Raquel M. Gonçalves is also grateful to FCT for FCT Investigator Starting Grant (IF/000638/2014). The authors would also like to thank to Maria Molinos, Carla Cunha, Juliana Alves, António Ribeiro and Susana Carrilho for technical assistance/guidance during experiments. The authors would also like to acknowledge Carnes Landeiro, S. A. for providing the bovine tails.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mário A. Barbosa.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Antunes, J.C., Pereira, C.L., Teixeira, G.Q. et al. Poly(γ-glutamic acid) and poly(γ-glutamic acid)-based nanocomplexes enhance type II collagen production in intervertebral disc. J Mater Sci: Mater Med 28, 6 (2017). https://doi.org/10.1007/s10856-016-5787-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10856-016-5787-1

Keywords

Navigation