Skip to main content
Log in

Poly(2-oxazoline)s as materials for biomedical applications

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

The conjunction of polymers and medicine enables the development of new materials that display novel features, opening new ways to administrate drugs, design implants and biosensors, to deliver pharmaceuticals impacting cancer treatment, regenerative medicine or gene therapy. Poly(2-oxazoline)s (POx) constitute a polymer class with exceptional properties for their use in a plethora of different biomedical applications and are proposed as a versatile platform for the development of new medicine. Herein, a global vision of POx as a platform for novel biomaterials is offered, by highlighting the recent advances and breakthroughs in this fascinating field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Staudinger H. Nobel lecture: macromolecular chemistry. http://www.nobelprize.org (1953). Accessed 15 Sep 2012.

  2. Ringsdorf HH. Hermann Staudinger and the future of polymer research jubilees-beloved occasions for cultural piety. Angew Chem Int Ed Engl. 2004;43(9):1064–76.

    Article  Google Scholar 

  3. Ringsdorf HH. Structure and properties of pharmacologically active polymers. J polym sci C. 1975;51(1):135–53. doi:10.1002/polc.5070510111.

    Google Scholar 

  4. Haag R, Kratz F. Polymer therapeutics: concepts and applications. Angew Chem Int Ed Engl. 2006;45(8):1198–215.

    Article  Google Scholar 

  5. Lendlein A, Pierce B, Ambrosio L, Grijpma. Special issue: advanced functional polymers for medicine. Macromol Biosci. 2011;11(12):1613–768.

    Article  Google Scholar 

  6. Schlaad H, Hoogenboom R. Special issue: poly(2-oxazoline)s and related pseudo-polypeptides. Macromol Rapid Commun. 2012;33(19):1593–719.

    Article  Google Scholar 

  7. Leader B, Baca QJ, Golan DE. Protein therapeutics: a summary and pharmacological classification. Nat Rev Drug Discov. 2008;7(1):21–39.

    Article  Google Scholar 

  8. Duncan R. The dawning era of polymer therapeutics. Nat Rev Drug Discov. 2003;2(5):347–60.

    Article  Google Scholar 

  9. Caliceti P, Veronese FM. Pharmacokinetic and biodistribution properties of poly(ethylene glycol)–protein conjugates. Adv Drug Deliv Rev. 2003;55(10):1261–77.

    Article  Google Scholar 

  10. Jevševar S, Kunstelj M, Porekar VG. PEGylation of therapeutic proteins. Biotechnol J. 2010;5(1):113–28.

    Article  Google Scholar 

  11. Pasut G, Veronese FM. State of the art in PEGylation: the great versatility achieved after forty years of research. J Control Release. 2012;161(2):461–72.

    Article  Google Scholar 

  12. Levy Y, Hershfield MS, Fernandez-Mejia C, Polmar SH, Scudiery D, Berger M, et al. Adenosine deaminase deficiency with late onset of recurrent infections: response to treatment with polyethylene glycol-modified adenosine deaminase. J Pediatr. 1988;113(2):312–7.

    Article  Google Scholar 

  13. Armstrong JK, Hempel G, Koling S, Chan LS, Fisher T, Meiselman HJ, et al. Antibody against poly(ethylene glycol) adversely affects PEG-asparaginase therapy in acute lymphoblastic leukemia patients. Cancer. 2007;110(1):103–11.

    Article  Google Scholar 

  14. Tagami T, Nakamura K, Shimizu T, Yamazaki N, Ishida T, Kiwada H. CpG motifs in pDNA-sequences increase anti-PEG IgM production induced by PEG-coated pDNA-lipoplexes. J Control Release. 2010;142(2):160–6.

    Article  Google Scholar 

  15. Zhao Y, Wang C, Wang L, Yang Q, Tang W, She Z, et al. A frustrating problem: accelerated blood clearance of PEGylated solid lipid nanoparticles following subcutaneous injection in rats. Eur J Pharm Biopharm. 2012;81(3):506–13.

    Article  Google Scholar 

  16. Suzuki T, Ichihara M, Hyodo K, Yamamoto E, Ishida T, Kiwada H, et al. Accelerated blood clearance of PEGylated liposomes containing doxorubicin upon repeated administration to dogs. Int J Pharm. 2012;436(1–2):636–43.

    Article  Google Scholar 

  17. Ma Y, Yang Q, Wang L, Zhou X, Zhao Y, Deng Y. Repeated injections of PEGylated liposomal topotecan induces accelerated blood clearance phenomenon in rats. Eur J Pharm Sci. 2012;45(5):539–45.

    Article  Google Scholar 

  18. Arima Y, Toda M, Iwata H. Complement activation on surfaces modified with ethylene glycol units. Biomaterials. 2008;29(5):551–60.

    Article  Google Scholar 

  19. Moghimi SM, Hunter AC, Dadswell CM, Savay S, Alving CR, Szebeni J. Causative factors behind poloxamer 188 (Pluronic F68, Flocor™)-induced complement activation in human sera: a protective role against poloxamer-mediated complement activation by elevated serum lipoprotein levels. Biochim Biophys Acta. 2004;1689(2):103–13.

    Article  Google Scholar 

  20. Hamad I, Hunter AC, Szebeni J, Moghimi SM. Poly(ethylene glycol)s generate complement activation products in human serum through increased alternative pathway turnover and a MASP-2-dependent process. Mol Immunol. 2008;46(2):225–32.

    Article  Google Scholar 

  21. Knop K, Hoogenboom R, Fischer D, Schubert US. Poly(ethylene glycol) in drug delivery: pros and cons as well as potential alternatives. Angew Chem Int Ed Engl. 2010;49(36):6288–308.

    Article  Google Scholar 

  22. Barz M, Luxenhofer R, Zentel R, Vicent MJ. Overcoming the PEG-addiction: well-defined alternatives to PEG, from structure–property relationships to better defined therapeutics. Polym Chem. 2011;2(9):1900–18.

    Article  Google Scholar 

  23. Veronese FM, editor. PEGylated protein drugs: basic science and clinical applications. Milestones in drug therapy. Basel: Springer; 2009.

    Google Scholar 

  24. Lee JS, Feijen J. Polymersomes for drug delivery: design, formation and characterization. J Control Release. 2012;161(2):473–83.

    Article  Google Scholar 

  25. Fleige E, Quadir MA, Haag R. Stimuli-responsive polymeric nanocarriers for the controlled transport of active compounds: concepts and applications. Adv Drug Deliv Rev. 2012;64(9):866–84.

    Article  Google Scholar 

  26. Duncan R, Vicent MJ. Polymer therapeutics-prospects for 21st century: the end of the beginning. Adv Drug Deliv Rev. 2012;65(1):60–70.

    Article  Google Scholar 

  27. Tomalia DA, Sheetz DP. Homopolymerization of 2-alkyl- and 2-aryl-2-oxazolines. J Polym Sci A. 1966;4(9):2253–65.

    Article  Google Scholar 

  28. Seeliger W, Aufderhaar E, Diepers W, Feinauer R, Nehring R, Thier W, et al. Recent syntheses and reactions of cyclic imidic esters. Angew Chem Int Ed Engl. 1966;5(10):875–88.

    Article  Google Scholar 

  29. Kagiya T, Narisawa S, Maeda T, Fukui K. Ring-opening polymerization of 2-substituted 2-oxazolines. J Polym Sci C. 1966;4(7):441–5.

    Google Scholar 

  30. Bassiri TG, Levy A, Litt M. Polymerization of cyclic imino ethers. I. Oxazolines. J Polym Sci C. 1967;5(9):871–9.

    Google Scholar 

  31. Hoogenboom R. Poly(2-oxazoline)s: a polymer class with numerous potential applications. Angew Chem Int Ed Engl. 2009;48(43):7978–94.

    Article  Google Scholar 

  32. Adams N, Schubert US. Poly(2-oxazolines) in biological and biomedical application contexts. Adv Drug Deliv Rev. 2007;59(15):1504–20.

    Article  Google Scholar 

  33. Hoogenboom R, Schlaad H. Bioinspired poly(2-oxazoline)s. Polymers. 2011;3(1):467–88.

    Article  Google Scholar 

  34. Schlaad H, Diehl C, Gress A, Meyer M, Demirel AL, Nur Y, et al. Poly(2-oxazoline)s as smart bioinspired polymers. Macromol Rapid Commun. 2010;31(6):511–25.

    Article  Google Scholar 

  35. Sedlacek O, Monnery BD, Filippov SK, Hoogenboom R, Hruby M. Poly(2-oxazoline)s—are they more advantageous for biomedical applications than other polymers? Macromol Rapid Commun. 2012;33(19):1648–62.

    Article  Google Scholar 

  36. Woodle MC, Engbers CM, Zalipsky S. New amphipatic polymer–lipid conjugates forming long-circulating reticuloendothelial system-evading liposomes. Bioconjug Chem. 1994;5(6):493–6.

    Article  Google Scholar 

  37. Mero A, Pasut G, Via LD, Fijten MWM, Schubert US, Hoogenboom R, Veronese FM. Synthesis and characterization of poly(2-ethyl 2-oxazoline)-conjugates with proteins and drugs: suitable alternatives to PEG-conjugates? J Control Release. 2008;125(2):87–95.

    Article  Google Scholar 

  38. Bauer M, Lautenschlaeger C, Kempe K, Tauhardt L, Schubert US, Fischer D. Poly(2-ethyl-2-oxazoline) as alternative for the stealth polymer poly(ethylene glycol): comparison of in vitro cytotoxicity and hemocompatibility. Macromol Biosci. 2012;12(7):986–98.

    Article  Google Scholar 

  39. Viegas TX, Bentley MD, Harris JM, Fang Z, Yoon K, Dizman B, et al. Polyoxazoline: chemistry, properties, and applications in drug delivery. Bioconjug Chem. 2011;22(5):976–86.

    Article  Google Scholar 

  40. Aoi K, Okada M. Polymerization of oxazolines. Prog Polym Sci. 1996;21(1):151–208.

    Article  Google Scholar 

  41. Kobayashi S. Polymerization of oxazolines. In: Krzysztof M, Martin M, editors. Polymer science: a comprehensive reference. Amsterdam: Elsevier; 2012. p. 397–426.

    Chapter  Google Scholar 

  42. Kobayashi S, Uyama H, Narita Y, Ishiyama J. Novel multifunctional initiators for polymerization of 2-oxazolines. Macromolecules. 1992;25(12):3232–6.

    Article  Google Scholar 

  43. Paulus RM, Becer CR, Hoogenboom R, Schubert US. Acetyl halide initiator screening for the cationic ring-opening polymerization of 2-ethyl-2-oxazoline. Macromol Chem Phys. 2008;209(8):794–800.

    Article  Google Scholar 

  44. Hoogenboom R, Fijten MWM, Kickelbick G, Schubert US. Synthesis and crystal structures of multifunctional tosylates as basis for star-shaped poly(2-ethyl-2-oxazoline)s. Beilstein J Org Chem. 2010;6:773–83.

    Article  Google Scholar 

  45. Luxenhofer R, Bezen M, Jordan R. Kinetic investigations on the polymerization of 2-oxazolines using pluritriflate initators. Macromol Rapid Commun. 2008;29(18):1509–13.

    Article  Google Scholar 

  46. Kowalczuk A, Kronek J, Bosowska K, Trzebicka B, Dworak A. Star poly(2-ethyl-2-oxazoline)s—synthesis and thermosensitivity. Polym Int. 2011;60(7):1001–9.

    Article  Google Scholar 

  47. Tasdelen MA, Kahveci MU, Yagci Y. Telechelic polymers by living and controlled/living polymerization methods. Prog Polym Sci. 2011;36(4):455–567.

    Article  Google Scholar 

  48. Glassner M, Kempe K, Schubert US, Hoogenboom R, Barner-Kowollik C. One-pot synthesis of cyclopentadienyl endcapped poly(2-ethyl-2-oxazoline) and subsequent ambient temperature Diels–Alder conjugations. Chem Commun. 2011;47(38):10620–2.

    Article  Google Scholar 

  49. Volet G, Lav T-X, Babinot J, Amiel C. Click-chemistry: an alternative way to functionalize poly(2-methyl-2-oxazoline). Macromol Chem Phys. 2011;212(2):118–24.

    Article  Google Scholar 

  50. Park J-S, Akiyama Y, Winnik FM, Kataoka K. Versatile synthesis of end-functionalized thermosensitive poly(2-isopropyl-2-oxazolines). Macromolecules. 2004;37(18):6786–92.

    Article  Google Scholar 

  51. Hoogenboom R, Wiesbrock F, Leenen MAM, Thijs HML, Huang H, Fustin C-A, et al. Synthesis and aqueous micellization of amphiphilic tetrablock ter- and quarterpoly(2-oxazoline)s. Macromolecules. 2007;40(8):2837–43.

    Article  Google Scholar 

  52. Fustin C-A, Thijs-Lambermont HML, Hoeppener S, Hoogenboom R, Schubert US, Gohy J-F. Multiple micellar morphologies from tri- and tetrablock copoly(2-oxazoline)s in binary water–ethanol mixtures. J Polym Sci A. 2010;48(14):3095–102.

    Article  Google Scholar 

  53. Krumm C, Fik CP, Meuris M, Dropalla GJ, Geltenpoth H, Sickmann A, et al. Well-defined amphiphilic poly(2-oxazoline) ABA-triblock copolymers and their aggregation behavior in aqueous solution. Macromol Rapid Commun. 2012;33(19):1677–82.

    Article  Google Scholar 

  54. Rossegger E, Schenk V, Wiesbrock F. Design strategies for functionalized poly(2-oxazoline)s and derived materials. Polymers. 2013;5(3):956–1011.

    Article  Google Scholar 

  55. Hoogenboom R. Polyethers and polyoxazolines. In: Dubois P, Coulembier O, Raquez J-M, editors. Handbook of ring-opening polymerization. Weinheim: Wiley; 2009. p. 141–64.

    Chapter  Google Scholar 

  56. Guillerm B, Monge S, Lapinte V, Robin J–J. How to modulate the chemical structure of polyoxazolines by appropriate functionalization. Macromol Rapid Commun. 2012;33(19):1600–12.

    Article  Google Scholar 

  57. Salzinger S, Huber S, Jaksch S, Busch P, Jordan R, Papadakis C. Aggregation behavior of thermo-responsive poly(2-oxazoline)s at the cloud point investigated by FCS and SANS. Colloid Polym Sci. 2012;290(5):385–400.

    Article  Google Scholar 

  58. Obeid R, Maltseva E, Thünemann AF, Tanaka F, Winnik FoM. Temperature response of self-assembled micelles of telechelic hydrophobically modified poly(2-alkyl-2-oxazoline)s in water. Macromolecules. 2009;42(6):2204–14.

    Article  Google Scholar 

  59. Diehl C, Schlaad H. Thermo-responsive polyoxazolines with widely tuneable LCST. Macromol Biosci. 2009;9(2):157–61.

    Article  Google Scholar 

  60. Huber S, Jordan R. Modulation of the lower critical solution temperature of 2-alkyl-2-oxazoline copolymers. Colloid Polym Sci. 2008;286(4):395–402.

    Article  Google Scholar 

  61. Hoogenboom R, Thijs HML, Jochems MJHC, van Lankvelt BM, Fijten MWM, Schubert US. Tuning the LCST of poly(2-oxazoline)s by varying composition and molecular weight: alternatives to poly(N-isopropylacrylamide)? Chem Commun. 2008;44:5758–60.

    Article  Google Scholar 

  62. Meyer M, Antonietti M, Schlaad H. Unexpected thermal characteristics of aqueous solutions of poly(2-isopropyl-2-oxazoline). Soft Matter. 2007;3(4):430–1.

    Article  Google Scholar 

  63. Park J-S, Kataoka K. Comprehensive and accurate control of thermosensitivity of poly(2-alkyl-2-oxazoline)s via well-defined gradient or random copolymerization. Macromolecules. 2007;40(10):3599–609.

    Article  Google Scholar 

  64. Park J-S, Kataoka K. Precise control of lower critical solution temperature of thermosensitive poly(2-isopropyl-2-oxazoline) via gradient copolymerization with 2-ethyl-2-oxazoline as a hydrophilic comonomer. Macromolecules. 2006;39(19):6622–30.

    Article  Google Scholar 

  65. Diab C, Akiyama Y, Kataoka K, Winnik FM. Microcalorimetric study of the temperature-induced phase separation in aqueous solutions of poly(2-isopropyl-2-oxazolines). Macromolecules. 2004;37(7):2556–62.

    Article  Google Scholar 

  66. Christova D, Velichkova R, Loos W, Goethals EJ, Prez FD. New thermo-responsive polymer materials based on poly(2-ethyl-2-oxazoline) segments. Polymer. 2003;44(8):2255–61.

    Article  Google Scholar 

  67. Chen FP, Ames AE, Taylor LD. Aqueous solutions of poly(ethyloxazoline) and its lower consolute phase transition. Macromolecules. 1990;23(21):4688–95.

    Article  Google Scholar 

  68. Bloksma MM, Weber C, Perevyazko IY, Kuse A, Baumgärtel A, Vollrath A, et al. Poly(2-cyclopropyl-2-oxazoline): from rate acceleration by cyclopropyl to thermoresponsive properties. Macromolecules. 2011;44(11):4057–64.

    Article  Google Scholar 

  69. Luxenhofer R, Han Y, Schulz A, Tong J, He Z, Kabanov AV, et al. Poly(2-oxazoline)s as polymer therapeutics. Macromol Rapid Commun. 2012;33(19):1613–31.

    Article  Google Scholar 

  70. Kempe K, Hoogenboom R, Jaeger M, Schubert US. Three-fold metal-free efficient (“Click”) reactions onto a multifunctional poly(2-oxazoline) designer Scaffold. Macromolecules. 2011;44(16):6424–32.

    Article  Google Scholar 

  71. Sosnik A, Gotelli G, Abraham GA. Microwave-assisted polymer synthesis (MAPS) as a tool in biomaterials science: how new and how powerful. Prog Polym Sci. 2011;36(8):1050–78.

    Article  Google Scholar 

  72. Hoogenboom R, Schubert US. Microwave-assisted polymer synthesis: recent developments in a rapidly expanding field of research. Macromol Rapid Commun. 2007;28(4):368–86.

    Article  Google Scholar 

  73. Bogdal D. Microwave-assisted polymerization. In: Krzysztof M, Martin M, editors. Polymer science: a comprehensive reference. Amsterdam: Elsevier; 2012. p. 981–1027.

    Chapter  Google Scholar 

  74. Hoogenboom R, Fijten MWM, Paulus RM, Thijs HML, Hoeppener S, Kickelbick G, et al. Accelerated pressure synthesis and characterization of 2-oxazoline block copolymers. Polymer. 2006;47(1):75–84.

    Article  Google Scholar 

  75. Wiesbrock F, Hoogenboom R, Leenen M, van Nispen SFGM, van der Loop M, Abeln CH, et al. Microwave-assisted synthesis of a 42-membered library of diblock copoly(2-oxazoline)s and chain-extended homo poly(2-oxazoline)s and their thermal characterization. Macromolecules. 2005;38(19):7957–66.

    Article  Google Scholar 

  76. Hoogenboom R, Wiesbrock F, Leenen MAM, Meier MAR, Schubert US. Accelerating the living polymerization of 2-nonyl-2-oxazoline by implementing a microwave synthesizer into a high-thrxoughput experimentation workflow. J Comb Chem. 2004;7(1):10–3.

    Article  Google Scholar 

  77. Kranenburg JM, Tweedie CA, Hoogenboom R, Wiesbrock F, Thijs HML, Hendriks CE, et al. Elastic moduli for a diblock copoly(2-oxazoline) library obtained by high-throughput screening. J Mater Chem. 2007;17(26):2713–21.

    Article  Google Scholar 

  78. U.S. Department of Health and Human Services. Food and Drug Administration. M3(R2) Nonclinical safety studies for the conduct of human clinical trials and marketing authorization for pharmaceuticals. 2010. http://www.fda.gov/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/default.htm. Accessed 20 July 2013.

  79. European Medicines Agency. ICH guideline M3(R2) on non-clinical safety studies for the conduct of human clinical trials and marketing authorisation for pharmaceuticals. 2009. EMA/CPMP/ICH/286/1995.

  80. SciFinder. Chemical abstracts service: Columbus. https://scifindercas.org (2012). Accessed 15 Sep 2012.

  81. Luxenhofer R, Sahay G, Schulz A, Alakhova D, Bronich TK, Jordan R, et al. Structure-property relationship in cytotoxicity and cell uptake of poly(2-oxazoline) amphiphiles. J Control Release. 2011;153(1):73–82.

    Article  Google Scholar 

  82. Wang X, Li X, Li Y, Zhou Y, Fan C, Li W, et al. Synthesis, characterization and biocompatibility of poly(2-ethyl-2-oxazoline)–poly(d,l-lactide)–poly(2-ethyl-2-oxazoline) hydrogels. Acta Biomater. 2011;7(12):4149–59.

    Article  Google Scholar 

  83. Kronek J, Kroneková Z, Lustoň J, Paulovičová E, Paulovičová L, Mendrek B. In vitro bio-immunological and cytotoxicity studies of poly(2-oxazolines). J Mater Sci Mater Med. 2011;22(7):1725–34.

    Article  Google Scholar 

  84. Konradi R, Acikgoz C, Textor M. Polyoxazolines for nonfouling surface coatings—a direct comparison to the gold standard PEG. Macromol Rapid Commun. 2012;33(19):1663–76.

    Article  Google Scholar 

  85. Zalipsky S, Hansen CB, Oaks JM, Allen TM. Evaluation of blood clearance rates and biodistribution of poly(2-oxazoline)-grafted liposomes. J Pharm Sci. 1996;85(2):133–7.

    Article  Google Scholar 

  86. Pidhatika B, Rodenstein M, Chen Y, Rakhmatullina E, Mühlebach A, Acikgöz C, et al. Comparative stability studies of poly(2-methyl-2-oxazoline) and poly(ethylene glycol) brush coatings. Biointerphases. 2012;7(1):1–15.

    Article  Google Scholar 

  87. Goddard P, Hutchinson LE, Brown J, Brookman LJ. Soluble polymeric carriers for drug delivery. Part 2. Preparation and in vivo behaviour of N-acylethylenimine copolymers. J Control Release. 1989;10(1):5–16.

    Article  Google Scholar 

  88. Gaertner FC, Luxenhofer R, Blechert B, Jordan R, Essler M. Synthesis, biodistribution and excretion of radiolabeled poly(2-alkyl-2-oxazoline)s. J Control Release. 2007;119(3):291–300.

    Article  Google Scholar 

  89. Wang C-H, Hwang Y-S, Chiang P-R, Shen C-R, Hong W-H, Hsiue G-H. Extended release of bevacizumab by thermosensitive biodegradable and biocompatible hydrogel. Biomacromolecules. 2011;13(1):40–8.

    Article  Google Scholar 

  90. Duncan R. Polymer therapeutics as nanomedicines: new perspectives. Curr Opin Biotechnol. 2011;22(4):492–501.

    Article  Google Scholar 

  91. Mero A, Fang Z, Pasut G, Veronese FM, Viegas TX. Selective conjugation of poly(2-ethyl 2-oxazoline) to granulocyte colony stimulating factor. J Control Release. 2012;159(3):353–61.

    Article  Google Scholar 

  92. Tong J, Luxenhofer R, Yi X, Jordan R, Kabanov AV. Protein modification with amphiphilic block copoly(2-oxazoline)s as a new platform for enhanced cellular delivery. Mol Pharm. 2010;7(4):984–92.

    Article  Google Scholar 

  93. European Medicines Agency. Summary of the European public assessment report (EPAR) for Glybera. 2012. http://www.ema.europa.eu. Accessed 20 July 2013.

  94. Marshall E. Gene therapy death prompts review of adenovirus vector. Science. 1999;286(5448):2244–5.

    Article  Google Scholar 

  95. Boyce N. Trial halted after gene shows up in semen. Nature. 2001;414(6865):677.

    Article  Google Scholar 

  96. Check E. Gene therapy: a tragic setback. Nature. 2002;420(6912):116–8.

    Article  Google Scholar 

  97. Morille M, Passirani C, Vonarbourg A, Clavreul A, Benoit J-P. Progress in developing cationic vectors for non-viral systemic gene therapy against cancer. Biomaterials. 2008;29(24–25):3477–96.

    Article  Google Scholar 

  98. O’Rorke S, Keeney M, Pandit A. Non-viral polyplexes: scaffold mediated delivery for gene therapy. Prog Polym Sci. 2010;35(4):441–58.

    Article  Google Scholar 

  99. Wong SY, Pelet JM, Putnam D. Polymer systems for gene delivery—past, present, and future. Prog Polym Sci. 2007;32(8–9):799–837.

    Article  Google Scholar 

  100. Gosselin MA, Guo W, Lee RJ. Efficient gene transfer using reversibly cross-linked low molecular weight polyethylenimine. Bioconjug Chem. 2001;12(6):989–94.

    Article  Google Scholar 

  101. Breunig M, Lungwitz U, Liebl R, Fontanari C, Klar J, Kurtz A, et al. Gene delivery with low molecular weight linear polyethylenimines. J Gene Med. 2005;7(10):1287–98.

    Article  Google Scholar 

  102. Brissault B, Kichler A, Guis C, Leborgne C, Danos O, Cheradame H. Synthesis of linear polyethylenimine derivatives for DNA transfection. Bioconjug Chem. 2003;14(3):581–7.

    Article  Google Scholar 

  103. Lambermont-Thijs HML, van der Woerdt FS, Baumgaertel A, Bonami L, Du Prez FE, Schubert US, et al. Linear poly(ethylene imine)s by acidic hydrolysis of poly(2-oxazoline)s: kinetic screening, thermal properties, and temperature-induced solubility transitions. Macromolecules. 2009;43(2):927–33.

    Article  Google Scholar 

  104. Thomas M, Lu JJ, Ge Q, Zhang C, Chen J, Klibanov AM. Full deacylation of polyethylenimine dramatically boosts its gene delivery efficiency and specificity to mouse lung. Proc Natl Acad Sci USA. 2005;102(16):5679–84.

    Article  Google Scholar 

  105. Jeong JH, Song SH, Lim DW, Lee H, Park TG. DNA transfection using linear poly(ethylenimine) prepared by controlled acid hydrolysis of poly(2-ethyl-2-oxazoline). J Control Release. 2001;73(2–3):391–9.

    Article  Google Scholar 

  106. Hsiue G-H, Chiang H-Z, Wang C-H, Juang T-M. Nonviral gene carriers based on diblock copolymers of poly(2-ethyl-2-oxazoline) and linear polyethylenimine. Bioconjug Chem. 2006;17(3):781–6.

    Article  Google Scholar 

  107. Bauhuber S, Liebl R, Tomasetti L, Rachel R, Goepferich A, Breunig M. A library of strictly linear poly(ethylene glycol)–poly(ethylene imine) diblock copolymers to perform structure–function relationship of non-viral gene carriers. J Control Release. 2012;162(2):446–55.

    Article  Google Scholar 

  108. von Erlach T, Zwicker S, Pidhatika B, Konradi R, Textor M, Hall H, et al. Formation and characterization of DNA-polymer-condensates based on poly(2-methyl-2-oxazoline) grafted poly(l-lysine) for non-viral delivery of therapeutic DNA. Biomaterials. 2011;32(22):5291–303.

    Article  Google Scholar 

  109. Grayson SM, Cortez M, inventors; Polyplex Gene Delivery Vectors. International Patent WO 2011/116371. 2011.

  110. Grayson SM. Polymer preprints (American Chemical Society, Division of Polymer Chemistry). 2012;53(1):370–1.

  111. Canal F, Sanchis J, Vicent MJ. Polymer–drug conjugates as nano-sized medicines. Curr Opin Biotechnol. 2011;22(6):894–900.

    Article  Google Scholar 

  112. Greco F, Vicent MJ. Combination therapy: opportunities and challenges for polymer–drug conjugates as anticancer nanomedicines. Adv Drug Deliv Rev. 2009;61(13):1203–13.

    Article  Google Scholar 

  113. Moreadith RW, Viegas TX, Standaert DG, Bentley MD, Fang Z, Dizman B, Yoon K, Weimer R, Harris JM, Ravenscroft P, Johnston TH, Hill M, Brotchie JM. SER-214, a novel polymer-conjugated rotigotine formulation affords greatly extended duration of anti-Parkinsonian effect and enhanced plasma exposure following a single administration in rodents and primates. Proceedings of the 16th international conference of Parkinson’s disease and movement disorders, movement disorder society; Jun 17–21, 20125; Dublin, Ireland. Late breaking abstract 5, 2012.

  114. Serina Therapeutics. US Patent and Trademark Office awards Serina Therapeutics key patent covering its lead clinical candidate for Parkinson’s disease and restless leg syndrome. 2013. http://www.serinatherapeutics.com/. Accessed 20 July 2013.

  115. Wei H, Zhuo R-X, Zhang X-Z. Design and development of polymeric micelles with cleavable links for intracellular drug delivery. Prog Polym Sci. 2012;38(3–4):103–35.

    Google Scholar 

  116. Tyrrell ZL, Shen Y, Radosz M. Fabrication of micellar nanoparticles for drug delivery through the self-assembly of block copolymers. Prog Polym Sci. 2010;35(9):1128–43.

    Article  Google Scholar 

  117. Chacko RT, Ventura J, Zhuang J, Thayumanavan S. Polymer nanogels: a versatile nanoscopic drug delivery platform. Adv Drug Deliv Rev. 2012;64(9):836–51.

    Article  Google Scholar 

  118. Matsumura Y, Kataoka K. Preclinical and clinical studies of anticancer agent-incorporating polymer micelles. Cancer Sci. 2009;100(4):572–9.

    Article  Google Scholar 

  119. Onaca O, Enea R, Hughes DW, Meier W. Stimuli-responsive polymersomes as nanocarriers for drug and gene delivery. Macromol Biosci. 2009;9(2):129–39.

    Article  Google Scholar 

  120. Nardin C, Thoeni S, Widmer J, Winterhalter M, Meier W. Nanoreactors based on (polymerized) ABA-triblock copolymer vesicles. Chem Commun. 2000;15:1433–4.

    Article  Google Scholar 

  121. Ben-Haim N, Broz P, Marsch S, Meier W, Hunziker P. Cell-specific integration of artificial organelles based on functionalized polymer vesicles. Nano Lett. 2008;8(5):1368–73.

    Article  Google Scholar 

  122. Broz P, Ben-Haim N, Grzelakowski M, Marsch S, Meier W, Hunziker P. Inhibition of macrophage phagocytotic activity by a receptor-targeted polymer vesicle-based drug delivery formulation of pravastatin. J Cardiovasc Pharmacol. 2008;51(3):246–52.

    Article  Google Scholar 

  123. Ranquin A, Versées W, Meier W, Steyaert J, Van Gelder P. Therapeutic nanoreactors: combining chemistry and biology in a novel triblock copolymer drug delivery system. Nano Lett. 2005;5(11):2220–4.

    Article  Google Scholar 

  124. Trzebicka B, Koseva N, Mitova V, Dworak A. Organization of poly(2-ethyl-2-oxazoline)-block-poly(2-phenyl-2-oxazoline) copolymers in water solution. Polymer. 2010;51(12):2486–93.

    Article  Google Scholar 

  125. Milonaki Y, Kaditi E, Pispas S, Demetzos C. Amphiphilic gradient copolymers of 2-methyl- and 2-phenyl-2-oxazoline: self-organization in aqueous media and drug encapsulation. J Polym Sci A. 2012;50(6):1226–37.

    Article  Google Scholar 

  126. Krumm C, Fik CP, Meuris M, Dropalla GJ, Geltenpoth H, Sickmann A, et al. Well-defined amphiphilic poly(2-oxazoline) ABA-triblock copolymers and their aggregation behavior in aqueous solution. Macromol Rapid Commun. 2012;33(19):1677–82.

    Article  Google Scholar 

  127. Persidis A. Cancer multidrug resistance. Nat Biotechnol. 1999;17(1):94–5.

    Article  Google Scholar 

  128. Luxenhofer R, Schulz A, Roques C, Li S, Bronich TK, Batrakova EV, et al. Doubly amphiphilic poly(2-oxazoline)s as high-capacity delivery systems for hydrophobic drugs. Biomaterials. 2010;31(18):4972–9.

    Article  Google Scholar 

  129. Han Y, He Z, Schulz A, Bronich TK, Jordan R, Luxenhofer R, et al. Synergistic combinations of multiple chemotherapeutic agents in high capacity poly(2-oxazoline) micelles. Mol Pharm. 2012;9(8):2302–13.

    Google Scholar 

  130. Lutolf MP. Biomaterials: spotlight on hydrogels. Nat Mater. 2009;8(6):451–3.

    Article  Google Scholar 

  131. Kelly AM, Hecke A, Wirnsberger B, Wiesbrock F. Synthesis of poly(2-oxazoline)-based hydrogels with tailor-made swelling degrees capable of stimuli-triggered compound release. Macromol Rapid Commun. 2011;32(22):1815–9.

    Article  Google Scholar 

  132. Dargaville TR, Forster R, Farrugia BL, Kempe K, Voorhaar L, Schubert US, et al. Poly(2-oxazoline) hydrogel monoliths via thiol-ene coupling. Macromol Rapid Commun. 2012;33(19):1695–700.

    Article  Google Scholar 

  133. http://www.gatt-tech.com/. Accessed 20 Oct 2012.

  134. Hoogenboom R, Bender J, Van Hest J, inventors; Cross-linked polymers and implants derived from electrophilically activated polyoxazoline. International Patent WO 2012/057628. 2012.

  135. Kelly AM, Wiesbrock F. Strategies for the synthesis of poly(2-oxazoline)-based hydrogels. Macromol Rapid Commun. 2012;33(19):1632–47.

    Article  Google Scholar 

  136. Del Pozo JL, Patel R. Infection associated with prosthetic joints. N Engl J Med. 2009;361(8):787–94.

    Article  Google Scholar 

  137. Werner C, Maitz MF, Sperling C. Current strategies towards hemocompatible coatings. J Mater Chem. 2007;17(32):3376–84.

    Article  Google Scholar 

  138. Krishnan S, Weinman CJ, Ober CK. Advances in polymers for anti-biofouling surfaces. J Mater Chem. 2008;18(29):3405–13.

    Article  Google Scholar 

  139. Vogler EA. Structure and reactivity of water at biomaterial surfaces. Adv Colloid Interface Sci. 1998;74(1–3):69–117.

    Article  Google Scholar 

  140. Vogler EA. In: Morra M, editor. Water in biomaterials surface science. 1st ed. New York: Wiley; 2001.

    Google Scholar 

  141. Roosjen A, de Vries J, van der Mei HC, Norde W, Busscher HJ. Stability and effectiveness against bacterial adhesion of poly(ethylene oxide) coatings in biological fluids. J Biomed Mater B. 2005;73B(2):347–54.

    Article  Google Scholar 

  142. Bozzini S, Petrini P, Tanzi MC, Zürcher S, Tosatti S. Poly(ethylene glycol) and hydroxy functionalized alkane phosphate mixed self-assembled monolayers to control nonspecific adsorption of proteins on titanium oxide surfaces. Langmuir. 2009;26(9):6529–34.

    Article  Google Scholar 

  143. Van Kuringen HPC, Lenoir J, Adriaens E, Bender J, De Geest BG, Hoogenboom R. Partial hydrolysis of poly(2-ethyl-2-oxazoline) and potential implications for biomedical applications? Macromol Biosci. 2012;12(8):1114–23.

    Article  Google Scholar 

  144. Konradi R, Pidhatika B, Muhlebach A, Textor M. Poly-2-methyl-2-oxazoline: a peptide-like polymer for protein-repellent surfaces. Langmuir. 2008;24(3):613–6.

    Article  Google Scholar 

  145. Pidhatika B, ller J, Vogel V, Konradi R. Nonfouling surface coatings based on poly(2-methyl-2-oxazoline). CHIMIA Int J Chem. 2008;62(4):264–9.

    Article  Google Scholar 

  146. Pidhatika B, Möller J, Benetti EM, Konradi R, Rakhmatullina E, Mühlebach A, et al. The role of the interplay between polymer architecture and bacterial surface properties on the microbial adhesion to polyoxazoline-based ultrathin films. Biomaterials. 2010;31(36):9462–72.

    Article  Google Scholar 

  147. Chang B-J, Prucker O, Groh E, Wallrath A, Dahm M, Rühe J. Surface-attached polymer monolayers for the control of endothelial cell adhesion. Colloid Surf A. 2002;198–200:519–26.

    Article  Google Scholar 

  148. Murata H, Chang BJ, Prucker O, Dahm M, Rühe J. Polymeric coatings for biomedical devices. Surf Sci. 2004;570(1–2):111–8.

    Article  Google Scholar 

  149. Wang H, Li L, Tong Q, Yan M. Evaluation of photochemically immobilized poly(2-ethyl-2-oxazoline) thin films as protein-resistant surfaces. ACS Appl Mater Interfaces. 2011;3(9):3463–71.

    Article  Google Scholar 

  150. Jordan R, Ulman A. Surface initiated living cationic polymerization of 2-oxazolines. J Am Chem Soc. 1998;120(2):243–7.

    Article  Google Scholar 

  151. Zhang N, Steenackers M, Luxenhofer R, Jordan R. Bottle-brush brushes: cylindrical molecular brushes of poly(2-oxazoline) on glassy carbon. Macromolecules. 2009;42(14):5345–51.

    Article  Google Scholar 

  152. Zhang N, Pompe T, Amin I, Luxenhofer R, Werner C, Jordan R. Tailored poly(2-oxazoline) polymer brushes to control protein adsorption and cell adhesion. Macromol Biosci. 2012;12(7):926–36.

    Article  Google Scholar 

  153. Zhang N, Luxenhofer R, Jordan R. Thermoresponsive poly(2-oxazoline) molecular brushes by living ionic polymerization: kinetic investigations of pendant chain grafting and cloud point modulation by backbone and side chain length variation. Macromol Chem Phys. 2012;213(9):973–81.

    Article  Google Scholar 

  154. Charnley M, Textor M, Acikgoz C. Designed polymer structures with antifouling–antimicrobial properties. React Funct Polym. 2011;71(3):329–34.

    Article  Google Scholar 

  155. Siedenbiedel F, Tiller JC. Antimicrobial polymers in solution and on surfaces: overview and functional principles. Polymers. 2012;4(1):46–71.

    Article  Google Scholar 

  156. Fik CP, Krumm C, Muennig C, Baur TI, Salz U, Bock T, et al. Impact of functional satellite groups on the antimicrobial activity and hemocompatibility of telechelic poly(2-methyloxazoline)s. Biomacromolecules. 2011;13(1):165–72.

    Article  Google Scholar 

  157. Waschinski CJ, Herdes V, Schueler F, Tiller JC. Influence of satellite groups on telechelic antimicrobial functions of polyoxazolines. Macromol Biosci. 2005;5(2):149–56.

    Article  Google Scholar 

  158. Waschinski CJ, Zimmermann J, Salz U, Hutzler R, Sadowski G, Tiller JC. Design of contact-active antimicrobial acrylate-based materials using biocidal macromers. Adv Mater. 2008;20(1):104–8.

    Article  Google Scholar 

  159. Bieser AM, Thomann Y, Tiller JC. Contact-active antimicrobial and potentially self-polishing coatings based on cellulose. Macromol Biosci. 2011;11(1):111–21.

    Article  Google Scholar 

  160. Phadtare S, Vinod VP, Mukhopadhyay K, Kumar A, Rao M, Chaudhari RV, et al. Immobilization and biocatalytic activity of fungal protease on gold nanoparticle-loaded zeolite microspheres. Biotechnol Bioeng. 2004;85(6):629–37.

    Article  Google Scholar 

  161. Tokarev I, Tokareva I, Gopishetty V, Katz E, Minko S. Specific biochemical-to-optical signal transduction by responsive thin hydrogel films loaded with noble metal nanoparticles. Adv Mater. 2010;22(12):1412–6.

    Article  Google Scholar 

  162. Agrawal M, Rueda JC, Uhlmann P, Müller M, Simon F, Stamm M. Facile approach to grafting of poly(2-oxazoline) brushes on macroscopic surfaces and applications thereof. ACS Appl Mater Interfaces. 2012;4(3):1357–64.

    Article  Google Scholar 

  163. Claeys B, Vervaeck A, Vervaet C, Remon JP, Hoogenboom R, De Geest BG. Poly(2-ethyl-2-oxazoline) as matrix excipient for drug formulation by hot melt extrusion and injection molding. Macromol Rapid Commun. 2012;33(19):1701–7.

    Google Scholar 

Download references

Acknowledgments

I am grateful to Ghent Univerity for financial support, Dr. Bryn Monnery for helpful discussions and very especially to Prof. Richard Hoogenboom.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor R. de la Rosa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de la Rosa, V.R. Poly(2-oxazoline)s as materials for biomedical applications. J Mater Sci: Mater Med 25, 1211–1225 (2014). https://doi.org/10.1007/s10856-013-5034-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-013-5034-y

Keywords

Navigation