Skip to main content
Log in

Multiferroic properties of composites made up of ferromagnetic Co0.9Ni0.1Fe2O4 and La0.67Sr0.33MnO3 with ferroelectric 0.5Ba0.7Ca0.3TiO3-0.5BaZr0.2Ti0.8O3

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In the present study, the effect of the composites made up of magnetostrictive Co0.9Ni0.1Fe2O4 (CNFO) and colossal magnetoresistive La0.67Sr0.33MnO3 (LSMO) ferrites with the ferroelectric solid solution of 0.5Ba0.7Ca0.3TiO3-0.5BaZr0.2Ti0.8O3 (0.5BCT-0.5BZT) on the multiferroic properties are studied comparatively. Here, the magnetodielectric (MD) composite of 0.5(CNFO)-0.5(0.5BCT-0.5BZT) and 0.175(LSMO)-0.825(0.5BCT-0.5BZT) investigated comparatively using various characterization techniques. The simple and low-cost hydroxide co-precipitation method was used for the synthesis of individual constituents of the ferroelectric 0.5BCT-0.5BZT and ferromagnetic CNFO and LSMO. Structural studies of composites verified the existence of ferrite and ferroelectric phases. The microstructure displays the LSMO and CNFO particles arranged in close proximity over the BCT-BZT ferroelectric phase. The dielectric constant and tangent loss (Quality factor) variation of the composites were investigated for 100 Hz to 1 MHz frequency from room temperature to higher temperatures upto 500 °C. The magnetic hysteresis plot can be used to study how the composite saturation magnetization increases with an increase in ferrite content. Magnetocapacitance measurements up to 1 Tesla magnetic field gives 7% and 2.5% MD coefficients for the both composite materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Data sets generated during the current study are available from the corresponding author on reasonable request.

References

  1. R. Ramesh, N.A. Spaldin, Nat. Mater. 6, 21–29 (2007). https://doi.org/10.1038/nmat1805

    Article  CAS  PubMed  Google Scholar 

  2. C.W. Nan, M.I. Bichurin, S. Dong, D. Viehland, G. Shrinivasan, J. Appl. Phys. 103, 1–36 (2008). https://doi.org/10.1063/1.2836410

    Article  CAS  Google Scholar 

  3. G. Lawes, A.P. Ramirez, C.M. Varma, M.A. Subramanian, Phys. Rev. Lett. 91, 257208 (2003). https://doi.org/10.1103/PhysRevLett.91.257208

    Article  CAS  PubMed  Google Scholar 

  4. W. Eerenstein, N.D. Mathur, J.F. Scott, Nature 442, 759–765 (2006). https://doi.org/10.1038/nature05023

    Article  CAS  PubMed  Google Scholar 

  5. K.F. Wang, J.-M. Liu, Z.F. Ren, Adv. Phys. 58, 321–448 (2009). https://doi.org/10.1080/00018730902920554

    Article  CAS  Google Scholar 

  6. Y. Tokura, S. Seki, Adv. Mater. 22, 1554–1565 (2010). https://doi.org/10.1002/adma.200901961

    Article  CAS  PubMed  Google Scholar 

  7. T. Kimura, T. Goto, H. Shintani, K. Ishizaka, T. Arima, Y. Tokura, Nature 426, 55–58 (2003). https://doi.org/10.1038/nature02018

    Article  CAS  PubMed  Google Scholar 

  8. N. Mufti, A.A. Nugroho, G.R. Blake, T.T.M. Palstra, J. Phys. Condens. Matter. 22, 075902 (2010). https://doi.org/10.1088/0953-8984/22/7/075902

    Article  CAS  PubMed  Google Scholar 

  9. F. Zhu, J. Qiu, H. Ji, K. Zhu, K. Wen, J. Mater. Sci. Mater. Electron. 26, 2897–2904 (2015). https://doi.org/10.1007/s10854-015-2775-z

    Article  CAS  Google Scholar 

  10. J. Rodel, W. Jo, K.T.P. Seifert, E. Anton, T. Granzow, J. Am. Ceram. Soc. 1177, 1153–1177 (2009). https://doi.org/10.1111/j.1551-2916.2009.03061.x

    Article  CAS  Google Scholar 

  11. J.P. Praveen, T. Karthik, A.R. James, E. Chandrakala, S. Asthana, D. Das, J. Eur. Ceram. Soc. 35, 1785–1798 (2014). https://doi.org/10.1016/j.jeurceramsoc.2014.12.010

    Article  CAS  Google Scholar 

  12. T.R. Shrout, S.J. Zhang, J. Electroceramics 19, 111–124 (2007). https://doi.org/10.1007/s10832-007-9047-0

    Article  CAS  Google Scholar 

  13. X. Wang, H. Yamada, C.N. Xu, Appl. Phys. Lett. 86, 022905 (2005). https://doi.org/10.1063/1.1850598

    Article  CAS  Google Scholar 

  14. W. Liu, X. Ren, Phys. Rev. Lett. 103, 257602 (2009). https://doi.org/10.1103/PhysRevLett.103.257602

    Article  CAS  PubMed  Google Scholar 

  15. S.S. Kumbhar, M.A. Mahadik, V.S. Mohite, Y.M. Hunge, K.Y. Rajpure, C.H. Bhosale, Mater. Res. Bull. 67, 47–54 (2015). https://doi.org/10.1016/j.materresbull.2015.02.056

    Article  CAS  Google Scholar 

  16. S. Joshi, M. Kumar, Ceram. int. 42(16), 18154–18165 (2016). https://doi.org/10.1016/j.ceramint.2016.08.130

    Article  CAS  Google Scholar 

  17. P. Pan, J. Tao, F. Ma, N. Zhang, J. Magn. Magn. Mater. 453, 91–95 (2018). https://doi.org/10.1016/j.jmmm.2017.12.107

    Article  CAS  Google Scholar 

  18. C. Lavado, M.S. Alkathy, J.A. Eiras, M.G. Stachiotti, Appl. Phy. A-Mater. 129, 147 (2023). https://doi.org/10.1007/s00339-023-06445-z

    Article  CAS  Google Scholar 

  19. R.C. Kambale, P.A. Shaikh, K.Y. Rajpure, P.B. Joshi, Y.D. Kolekar, Integr. Ferroelectr. 121(1), 1–12 (2010). https://doi.org/10.1080/10584587.2010.491765

    Article  CAS  Google Scholar 

  20. M.M. Sutar, A.N. Tarale, S.R. Jigajeni, S.B. Kulkarni, P.B. Joshi, Appl. Nanosci. 2, 311–317 (2012). https://doi.org/10.1007/s13204-012-0119-3

    Article  CAS  Google Scholar 

  21. M. Cesaria, A.P. Caricato, G. Maruccio, M. Martino, J. Phys. Conf. Ser. 292, 12003 (2011). https://doi.org/10.1088/1742-6596/292/1/012003

    Article  CAS  Google Scholar 

  22. C. Martínez-Boubeta, Z. Konstantinovic, L. Balcells, S. Estrade, J. Arbiol, A. Cebollada, B. Martinez, Cryst. Growth Des. 10, 1017–1020 (2010). https://doi.org/10.1021/cg900866g

    Article  CAS  Google Scholar 

  23. Z. Shui, D. Xianlin, Y. Genshui, J. Zhu, X. Tang, Solid State Commun. 151(14), 982–984 (2011). https://doi.org/10.1016/j.ssc.2011.05.005

    Article  CAS  Google Scholar 

  24. A.B. Kakade, S.K. Deshpande, S.B. Kulkarni, Eng. Sci. 18, 168–176 (2021). https://doi.org/10.30919/es8d485

    Article  CAS  Google Scholar 

  25. A.B. Kakade, S.M. Mane, J.C. Shin, S.B. Kulkarni, Ceram. int. 48(19), 29403–29413 (2022). https://doi.org/10.1016/j.ceramint.2022.06.080

    Article  CAS  Google Scholar 

  26. S.M. Mane, P.M. Tirmali, S.L. Kadam, A.N. Tarale, C.B. Kolekar, S.B. Kulkarni, J. Chin. Advn. Mater. Soc. 4, 269–284 (2016). https://doi.org/10.1080/22243682.2016.1214924

    Article  CAS  Google Scholar 

  27. V.S. Puli, D.K. Pradhan, D.B. Chrisey, M. Tomozawa, G.L. Sharma, J.F. Scott, R.S. Katiyar, J. Mater. Sci. 48(5), 2151–2157 (2013). https://doi.org/10.1007/s10853-012-6990-1

    Article  CAS  Google Scholar 

  28. A. Kumar, P. Sharma, D. Varshney, Ceram. Int. 40(8), 12855–12860 (2014). https://doi.org/10.1016/j.ceramint.2014.04.140

    Article  CAS  Google Scholar 

  29. K. Maaz, W. Khalid, A. Mumtaz, S.K. Hasanain, J. Liu, J.L. Duan, Physica E 41(4), 593–599 (2009). https://doi.org/10.1016/j.physe.2008.10.009

    Article  CAS  Google Scholar 

  30. J. Rani, K.L. Yadav, S. Prakash, Mater. Chem. Phys. 147(3), 1183–1190 (2014). https://doi.org/10.1016/j.matchemphys.2014.07.002

    Article  CAS  Google Scholar 

  31. S.M. Bobade, D.D. Gulwade, A.R. Kulkarni, P. Gopalan, J. Appl. Phys. 97, 074105 (2005). https://doi.org/10.1063/1.1879074

    Article  CAS  Google Scholar 

  32. J.Y. Zhai, N. Cai, L. Liu, Y.H. Lin, C.W. Nan, Mater. Sci. Eng. B 99(1), 329–331 (2003). https://doi.org/10.1016/S0921-5107(02)00565-2

    Article  CAS  Google Scholar 

  33. A. Ghosh, K. Dey, M. Chakraborty, S. Majumdar, S. Giri, Lett. J. Explor. Front. Phys. 107(4), 47012 (2014). https://doi.org/10.1209/0295-5075/107/47012

    Article  CAS  Google Scholar 

  34. M.D. Rather, R. Samad, B. Want, J. Alloy. Comp. 755, 89–99 (2018). https://doi.org/10.1016/j.jallcom.2018.04.289

    Article  CAS  Google Scholar 

  35. S.R. Jigajeni, A.N. Tarale, D.J. Salunkhe, S.B. Kulkarni, P.B. Joshi, Appl. Nanosci. 2(3), 275–283 (2012). https://doi.org/10.1007/s13204-012-0104-x

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors are thankful to UGC-DAE CSR for financial support through grant (CRS-M-283).

Funding

This work was funded by UGC-DAE Consortium for Scientific Research,University Grants Commission, CRS-M-283, Abhishek Kakade.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by all the authors partially. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Shrinivas Kulkarni.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kakade, A., Kamat, R. & Kulkarni, S. Multiferroic properties of composites made up of ferromagnetic Co0.9Ni0.1Fe2O4 and La0.67Sr0.33MnO3 with ferroelectric 0.5Ba0.7Ca0.3TiO3-0.5BaZr0.2Ti0.8O3. J Mater Sci: Mater Electron 35, 905 (2024). https://doi.org/10.1007/s10854-024-12682-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12682-6

Navigation