Skip to main content
Log in

Effects of calcination temperature on the microstructure and magnetic properties of low-temperature-fired Ni0.4Cu0.15Zn0.45Fe1.98O3.97 ferrites

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This study investigates the critical role of calcination temperature in determining the microstructural and magnetic properties of NiCuZn ferrites, with a specific emphasis on improving their DC-bias superposition characteristics. Our findings show that higher calcination temperatures cause an increase in sintered density and grain size, as well as the formation of a Cu-rich segregated phase at grain boundaries. Notably, ferrites calcined at 950 °C exhibited superior DC-bias superposition properties, which were attributed to the presence of a nonmagnetic copper-rich phase that modulates magnetic properties. NiCuZn ferrites with enhanced DC-bias superposition characteristics exhibit a more stable incremental permeability under a DC-bias magnetic field, which is essential for maintaining inductance at high currents. These findings highlight the critical role of calcination temperature in optimizing the magnetic performance of NiCuZn ferrites, providing useful insights for the development of advanced materials for high-frequency power.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data presented in this study are available in the article.

References

  1. H.I. Hsiang, Progress in materials and processes of multilayer power inductors. J. Mater. Sci. 31, 16089–16110 (2020)

    CAS  Google Scholar 

  2. M.C. Annamalai, P.N. Amutha, A comprehensive review on isolated and non-isolated converter configuration and fast charging technology: for battery and plug in hybrid electric vehicle. Heliyon. 9, e18808 (2023)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. J.M. Maza-Ortega, E. Acha, S. Garcia, A. Gomez-Exposito, Overview of power electronics technology and applications in power generation transmission and distribution. J. Mod. Power Syst. Clean Energy 5, 499–514 (2017)

    Article  Google Scholar 

  4. T. Aoki, J. Imaoka, M. Yamamoto, K. Yoshimoto, Improving DC superimposition characteristics of powder cores by applying coupled inductors in multi-phase boost converter. IET Power Electron. 15, 237–250 (2022)

    Article  Google Scholar 

  5. J. Imaoka, K. Okamoto, Y. Ishikura, M. Shoyama, M. Noah, M. Yamamoto, Modeling, magnetic design, simulation methods, and experimental evaluation of various powder cores used in power converters considering their DC superimposition characteristics. IEEE Trans. Power Electron. 34, 9033–9051 (2019)

    Article  Google Scholar 

  6. K. Kabeya, S. Yanase, Y. Okazaki, K. Yun, Magnetic property of iron-dust cores with mixture of ferromagnetic ferrite powder and alumina powder. IEEE Trans. Magn. 50, 1–4 (2014)

    Article  Google Scholar 

  7. J. Mühlethaler, J. Biela, J.W. Kolar, A. Ecklebe, Core losses under the DC bias condition based on Steinmetz parameters. IEEE Trans. Power Electron. 27, 953–963 (2012)

    Article  Google Scholar 

  8. A. Shrivastava, B.H. Calhoun, A DC-DC converter efficiency model for system level analysis in ultra low power applications. J. Low Power Electron. Appl. 3, 215–232 (2013)

    Article  Google Scholar 

  9. M.W. Beraki, J.P.F. Trovão, M.S. Perdigão, M.R. Dubois, Variable inductor based bidirectional DC–DC converter for electric vehicles. IEEE Trans. Veh. Technol. 66, 8764–8772 (2017)

    Article  Google Scholar 

  10. K. Górecki, K. Detka, Influence of power losses in the inductor core on characteristics of selected DC–DC converters. Energies 2019, 12 (1991)

    Google Scholar 

  11. C.A. Baguley, B. Carsten, U.K. Madawala, IEEE Trans. Magn. 44, 246–252 (2008)

    Article  Google Scholar 

  12. B.N. Sanusi, Z. Ouyang, Magnetic core losses under square-wave excitation and DC bias in high frequency regime, in 2022 IEEE Applied Power Electronics Conference and Exposition (APEC). Houston, TX, USA (2022), pp. 633–639

  13. B.N. Sanusi, M. Zambach, C. Frandsen, M. Beleggia, J.A. Michael, Z. Ouyang, Investigation and modeling of DC bias impact on core losses at high frequency. IEEE Trans. Power Electro. 38, 7444–7458 (2023)

    Article  Google Scholar 

  14. T. Tsutaoka, K.T. Teruhiro, K. Hatakeyama, Magnetic field effect on the complex permeability for a Mn–Zn ferrite and its composite materials. J. Eur. Ceram. Soc. 19, 1531–1535 (1999)

    Article  CAS  Google Scholar 

  15. H. Oshima, Y. Uehara, K. Shimizu, K. Inagaki, A. Furuya, J. Fujisaki, M. Suzuki, K. Kawano, T. Mifune, T. Matsuo, K. Watanabe, H. Igarashi, Experimental and simulation modeling studies of magnetic properties of Ni-Zn ferrite cores under DC bias. J. Jpn. Soc. Powder Powder Metall. 61, S238–S241 (2014)

    Article  Google Scholar 

  16. H.I. Hsiang, J.F. Chueh, Low-pressure-assisted constrained sintering of low-temperature-fire NiCuZn ferrites. Int. J. Appl. Ceram. Technol. 12, E194–E201 (2015)

    Article  CAS  Google Scholar 

  17. T. Rabe, H. Naghib-Zadeh, C. Glitzky, J. Töpfer, Integration of Ni-Cu-Zn ferrite in low temperature co-fired ceramics (LTCC) modules. Int. J. Appl. Ceram. Soc. 9, 18–28 (2012)

    Article  CAS  Google Scholar 

  18. J. Mürbe, J. Töpfer, Low temperature sintering of sub-stoichiometric Ni-Cu-Zn ferrites: shrinkage, microstructure and permeability. J. Magn. Magn. Mater. 324, 578–583 (2012)

    Article  Google Scholar 

  19. R.E. El-Shater, H.E. Shimy, S.A. Saafan, M.A. Darwish, D. Zhou, A.V. Trukhanov, S.V. Trukhanov, F. Fakhry, Synthesis, characterization, and magnetic properties of Mn nanoferrites. J. Alloys Compd. 928, 166954 (2022)

    Article  CAS  Google Scholar 

  20. M. Hassan, Y. Slimani, M.A. Gondal, M.J.S. Mohamed, S. Güner, M.A. Almessiere, A.M. Surrati, A. Baykal, S. Trukhanov, A. Trukhanov, Structural parameters, energy states and magnetic properties of the novel Se-doped NiFe2O4 ferrites as highly efficient electrocatalysts for HER. Ceram. Int. 48, 24866–24876 (2022)

    Article  CAS  Google Scholar 

  21. A. Manohar, G.R. Reddy, M.R. Hatshan, J.P. Goud, K.H. Kim, Structural and magnetic properties of Ca0.5Mg0.5Fe2O4/CeO2/NiFe2O4 nanocomposite for energy storage applications. Ceram. Int. 49, 35392–35398 (2023)

    Article  CAS  Google Scholar 

  22. A. Manohar, S.V.P. Vattikuti, P. Manivasagan, E.S. Jang, H.T.M. Abdelghani, K.H. Kim, Synthesis and characterization of CeO2/MgFe2O4 nanocomposites for electrochemical study and their cytotoxicity in normal human dermal fibroblast (HDF) and human breast cancer (MDA-MB-231) cell lines. J. Alloys Compd. 968, 171932 (2023)

    Article  CAS  Google Scholar 

  23. A. Manohar, V. Vijayakanth, P. Manivasagan, E.S. Jang, B. Hari, M. Gu, K.H. Kim, Investigation on the physico-chemical properties, hyperthermia and cytotoxicity study of magnesium doped manganese ferrite nanoparticles. Mater. Chem. Phys. 287, 126295 (2022)

    Article  CAS  Google Scholar 

  24. A. Manohar, V. Vijayakanth, V. Vinodhini, K. Chintagumpala, P. Manivasagan, E.S. Jang, K.H. Kim, Zinc- doped nickel ferrite nanoparticles for ESR, hyperhtermia and thier cytotoxicity in mouse muscle fibroblast (BLO-11) and human breast cancer (MDA-MB-231) cell lines. J. Alloys Compd. 960, 170780 (2023)

    Article  CAS  Google Scholar 

  25. Almessiere M.A.; Slimani Y.; Güngüneş H.; Korkmaz A.D.; Zubar T.; Trukhanov S.; Trukhanov A.; Manikandan A.; Alahmari F.; Baykal A. Influence of Dy3+ ions on the microstructures and magnetic, electrical, and microwave properties of [Ni0.4Cu0.2Zn0.4](Fe2–xDyx)O4 (0.00 ≤ x ≤ 0.04) spinel ferrites. ACS Omega 2021, 6, 15, 10266–10280.

  26. M.A. Almessiere, Y. Slimani, İA. Auwal, S.E. Shirsath, A. Manikandan, A. Baykal, B. Özçelik, İ Ercan, S.V. Trukhanov, D.A. Vinnik, A.V. Trukhanov, Impact of Tm3+ and Tb3+ rare earth cations substitution on the structure and magnetic parameters of Co-Ni nanospinel ferrite. Nanomaterials 10, 2384 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. X. Tang, H. Zhang, H. Su, Z. Zhong, F. Bai, Influence of microstructure on the DC-bias-superposition characteristics of NiZn ferrites. IEEE Trans. Magn. 47, 4332–4335 (2011)

    Article  CAS  Google Scholar 

  28. L. Huan, X. Tang, H. Su, H. Zhang, Y. Jing, B. Liu, Effects of SnO2 on DC-bias-superposition characteristic of the low-temperature-fired NiCuZn ferrites. IEEE Trans. Mag. 50, 2006104 (2014)

    Article  Google Scholar 

  29. L. Huan, X. Tang, H. Su, H. Zhang, Y. Jing, Effects of SiO2 concentration on the DC-bias-superposition characteristics of the NiCuZn ferrites. J. Mater. Sci. 26, 3275–3281 (2015)

    CAS  Google Scholar 

  30. H.I. Hsiang, J.F. Chueh, Bi2O3 Addition effects on the sintering mechanism, magnetic properties, and DC superposition behavior of NiCuZn ferrites. Int. J. Appl. Ceram. Technol. 12, 1008–1015 (2015)

    Article  CAS  Google Scholar 

  31. S. Yan, L. Dong, Z. Chen, X. Wang, Z. Feng, The effect of the microstructure on the DC-bias superposition characteristic of NiCuZn ferrite. J. Magn. Magn. Mater. 353, 47–50 (2014)

    Article  CAS  Google Scholar 

  32. H.I. Hsiang, J.L. Wu, Cooling rate effects on the microstructure, magnetic properties, and DC superposition behavior of NiCuZn ferrites. Int. J. Appl. Ceram. Technol. 12, 1065–1070 (2015)

    Article  CAS  Google Scholar 

  33. H.I. Hsiang, J.L. Wu, Copper-rich phase segregation effects on the magnetic properties and DC-bias-superposition characteristic of NiCuZn ferrites. J. Magn. Magn. Mater. 374, 367–371 (2015)

    Article  CAS  Google Scholar 

  34. H.I. Hsiang, W.C. Kuo, C.S. Hsi, Sintering and cooling atmosphere effects on the microstructure, magnetic properties and DC superposition behavior of NiCuZn ferrites. J. Eur. Ceram. Soc. 37, 2123–2128 (2017)

    Article  CAS  Google Scholar 

  35. M.A. Almessiere, B. Unal, Y. Slimani, H. Gungunes, M.S. Toprak, N. Tashkandi, A. Baykal, M. Sertkol, A.V. Trukhanov, A. Yıldız, A. Manikandan, Effects of Ce–Dy rare earths co-doping on various features of Ni–Co spinel ferrite microspheres prepared via hydrothermal approach. J. Mater. Res. Technol. 14, 2534–2553 (2021)

    Article  CAS  Google Scholar 

  36. M.A. Almessiere, Y. Slimani, H. Güngüneş, A.D. Korkmaz, S.V. Trukhanov, S. Guner, F. Alahmari, A.V. Trukhanov, A. Baykal, Correlation between chemical composition, electrical, magnetic and microwave properties in Dy-substituted Ni-Cu-Zn ferrites. Mater. Sci. Eng. B 270, 115202 (2021)

    Article  CAS  Google Scholar 

  37. A. Barba, C. Clausell, J.C. Jarque, M. Monzó, ZnO and CuO crystal precipitation in sintering Cu-doped Ni-Zn ferrites. I. Influence of dry relative density and cooling rate. J. Eur. Ceram. Soc. 31, 2119–2128 (2011)

    Article  CAS  Google Scholar 

  38. M. Fujimoto, Inner stress induced by Cu metal precipitation at grain boundaries in low-temperature-fired Ni-Zn-Cu ferrite. J. Am. Ceram. Soc. 77, 2873–2878 (1994)

    Article  CAS  Google Scholar 

  39. H. Naghib zadeh, G. Oder, J. Hesse, T. Reimann, J. Töpfer, T. Rabe, Effect of oxygen partial pressure on co-firing behavior and magnetic properties of LTCC modules with integrated NiCuZn ferrite layers. J. Electroceram. 37, 100–109 (2016)

    Article  CAS  Google Scholar 

  40. K. Sun, Z. Lan, Z. Yu, L. Li, J. Huang, X. Zhao, Grain growth, densification and magnetic properties of NiZn ferrites with additive. J. Phys. D. 41, 235002 (2008)

    Article  Google Scholar 

  41. A. Lucas, R. Lebourgeois, F. Mazaleyrat, E. Laboure, Temperature dependence of core loss in cobalt substituted Ni-Zn-Cu ferrites. J. Magn. Magn. Mater. 323, 735–739 (2011)

    Article  CAS  Google Scholar 

  42. J. Mürbe, J. Töpfer, Ni-Cu-Zn Ferrites for low temperature firing: II. Effects of powder morphology and Bi2O3 addition on microstructure and permeability. J. Electroceram. 16, 199–205 (2006)

    Article  Google Scholar 

  43. S.C. Byeon, H.J. Je, K.S. Hong, Microstructural optimization of low-temperature-fired Ni-Zn-Cu ferrites using calcination. Jpn. J. Appl. Phys. 36, 5103–5108 (1997)

    Article  CAS  Google Scholar 

  44. H. Huili, B. Grindi, A. Kouki, G. Viau, L.B. Tahar, Effect of sintering conditions on the structural, electrical, and magnetic properties of nanosized Co0.2Ni0.3Zn0.5Fe2O4. Ceram. Int. 41, 6212–6225 (2015)

    Article  CAS  Google Scholar 

  45. E.M.M. Ewais, M.M. Hessien, A.H.A. El-Geassy, In-Situ synthesis of magnetic Mn-Zn ferrite ceramic object by solid state reaction. J. Aust. Ceram. Soc. 44, 57–62 (2008)

    CAS  Google Scholar 

  46. J. Mürbe, J. Töpfer, High permeability Ni–Cu–Zn ferrites through additive-free low-temperature sintering of nanocrystalline powders. J. Eur. Ceram. Soc. 32, 1091–1098 (2012)

    Article  Google Scholar 

  47. J. Mürbe, J. Töpfer, Low temperature sintering of sub-stoichiometric Ni–Cu–Zn ferrites: shrinkage, microstructure and permeability. J. Magn. Magn. Mater. 324, 578–583 (2012)

    Article  Google Scholar 

  48. H. Su, Q. Luo, Y. Jing, Y. Li, H. Zhang, X. Tang, Effects of calcination temperature and flux doping on the microstructure and magnetic properties of low-temperature-fired NiCuZn ferrites. J. Magn. Magn. Mater. 469, 419–427 (2019)

    Article  CAS  Google Scholar 

  49. C.X. Ouyang, S. Xiao, J. Zhu, H. Wang, Effects of solid-state reaction temperature on the activation energy and DC-bias superposition of NiCuZn ferrites based on master sintering curve. Adv. Appl. Ceram. 115, 1–7 (2016)

    Article  Google Scholar 

  50. B.H. Guan, H. Soleimani, N. Yahya, N.R.A. Latiff, Phase evolution and crystallite size of Ni0.25Zn0.75Fe2O4 at different calcination temperatures. Adv. Mater. Res. 925, 290–294 (2014)

    Article  CAS  Google Scholar 

  51. Z. Huang, X. Sun, Z. Xiu, S. Chen, C.T. Tsai, Precipitation synthesis and sintering of yttria nanopowders. Mater. Lett. 58, 2137–2142 (2004)

    Article  CAS  Google Scholar 

  52. R. Cabiscol, H. Shi, I. Wünsch, V. Magnanimo, J.H. Finke, S. Luding, A. Kwade, Effect of particle size on powder compaction and tablet strength using limestone. Adv. Powder Technol. 31, 1280–1289 (2020)

    Article  CAS  Google Scholar 

  53. M.A. Occhionero, J.W. Halloran, The influence of green density upon sintering, in Materials science research. ed. by G.C. Kuczynski, A.E. Miller, G.A. Sargent (Springer, Boston, 1984)

    Google Scholar 

  54. H. Su, H. Zhang, X. Tang, Z. Zhong, F. Bai, Influences of high calcination temperature on densification and magnetic properties of low-temperature-fired NiCuZn ferrites. IEEE Trans. Magn. 47, 4328–4331 (2011)

    Article  CAS  Google Scholar 

  55. J. Zheng, J.S. Reed, Effects of particle packing characteristics on solid-state sintering. J. Am. Ceram. Soc. 72, 810–817 (1989)

    Article  CAS  Google Scholar 

  56. G. Liu, B. Dai, Y. Ren, H. He, W. Zhang, Microstructure and magnetic properties of Ni0·75Zn0·25Fe2O4 ferrite prepared using an electric current-assisted sintering method. Ceram. Int. 47, 11951–11957 (2021)

    Article  CAS  Google Scholar 

  57. S.M. Kabbur, U.R. Ghodake, D.Y. Nadargi, R.C. Kambale, S.S. Suryavanshi, Effect of Dy3+ substitution on structural and magnetic properties of nanocrystalline Ni-Cu-Zn ferrites. J. Magn. Magn. Mater. 451, 665–675 (2018)

    Article  CAS  Google Scholar 

  58. C.A. Stergiou, V. Zaspalis, Analysis of the complex permeability of NiCuZn ferrites up to 1GHz with regard to Cu content and sintering temperature. Ceram. Int. 40, 357–366 (2014)

    Article  CAS  Google Scholar 

  59. T.Y. Byun, S.C. Bycon, K.S. Hong, Factors affecting initial permeability of Co-substituted Ni-Zn-Cu ferrites. IEEE Trans. Mag. 35, 3445–3447 (1999)

    Article  CAS  Google Scholar 

  60. T. Tsutaoka, Frequency dispersion of complex permeability in Mn–Zn and Ni–Zn spinel ferrites and their composite materials. J. Appl. Phys. 93, 2789–2796 (2003)

    Article  CAS  Google Scholar 

  61. M.T. Johnson, E.G. Visser, A coherent model for the complex permeability in polycrystalline ferrites. IEEE Trans. Magn. 26, 1987–1989 (1990)

    Article  CAS  Google Scholar 

  62. H. Su, C. Zhao, Y. Li, Y. Jing, H. Zhang, X. Tang, Theoretical and experimental demonstration of the relationship between microstructure and the DC-bias-superposition characteristic of ferrite materials. Mater. Res. Bull. 107, 37–40 (2018)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research is co-funded by the National Science and Technology Council (NSTC 111-2622-8-006-024-SB) and National Cheng Kung University. The authors gratefully acknowledge using the Core Facility Center of National Cheng Kung University.

Funding

National Science and Technology Council, Taiwan (110-2622-8-006-024-SB).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: H.-I.H. and Y.-C.C; Data curation: Y.-C.C.; Formal analysis: Y.-C.C.; Funding acquisition: Y.-C.C. and Y.-H.S.; Investigation: Y.-C.C.; Methodology: Y.-C.C.; Resources: H.-I.H.; Software: Y.-C.C.; Validation: H.-I.H. and Y.-C.C.; Writing—original draft: H.-I.H.; Writing—review and editing: Y.-H.S. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Hsing-I Hsiang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

Not applicable.

Informed consent

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, YC., Shen, YH. & Hsiang, HI. Effects of calcination temperature on the microstructure and magnetic properties of low-temperature-fired Ni0.4Cu0.15Zn0.45Fe1.98O3.97 ferrites. J Mater Sci: Mater Electron 35, 831 (2024). https://doi.org/10.1007/s10854-024-12601-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12601-9

Navigation