Skip to main content
Log in

Experimental comparison between graphene and reduced graphene oxide along with significant conversion of rGO from n-to p-type

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

We demonstrate an efficient and non-explosive method for synthesizing graphene and reduced graphene oxide (rGO). To enable the use of both materials in broad electronic applications, a large-scale production method with controllable electrical properties must be needed. In the current state of graphene oxide preparation, Hummers method is the most widely used. In this method, NaNO3 produces toxic gases during the reaction, and hence, this method is not recommended for the large-scale production. Here, we adopted the liquid-phase exfoliation and Improved Hummers method to produce graphene and GO since it eliminates the use of NaNO3 and its toxicity. We introduced a pre-cooling procedure to reduce the explosive nature of the extremely exothermic reactions. This method yields more oxidized graphene compared to Hummers’ method. We experimentally compared the structural, electrical, and thermal transport properties of both the materials. Characterization techniques such as X-ray diffraction, FTIR, and optical microscopy reveal the high quality of graphene and rGO. Here, we also report the results on the conversion of rGO from n-type to p-type. It was found that graphene behaves as p-type material, whereas rGO behaves as an n-type up to an annealing temperature of 350 °C, while after 600 °C, it is converted to a p-type material. These results demonstrate that thermal annealing treatment drastically varies the carrier properties of rGO, allowing it to be used in various applications, including flexible thermoelectrics. A high-yield production of graphene and rGO could be beneficial from this improved synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availibility

The authors confirm that the data and findings of this study are available in the article. Raw data that support the results of this study are available from the corresponding authors, upon reasonable request.

References

  1. R. Hoffmann, A.A. Kabanov, A.A. Golov, D.M. Proserpio, Angew. Chem. Int. 55, 10962–10976 (2016)

    Article  CAS  Google Scholar 

  2. V. Singh, D. Joung, L. Zhai, S. Das, S.I. Khondaker, S. Seal, Prog. Mater. Sci. 56, 1178–1271 (2011)

    Article  CAS  Google Scholar 

  3. J.B. Wang, Z. Ren, Y. Hou, X.L. Yan, P.Z. Liu, H. Zhang et al., New Carbon Mater. 35, 193–208 (2020)

    Article  CAS  Google Scholar 

  4. Ö. Güler, S.H. Güler, V. Selen, M.G. Albayrak, E. Evin, Fullerenes Nanotubes Carbon Nanostruct. 24, 123–127 (2016)

    Article  Google Scholar 

  5. A. Amiri, M. Naraghi, G. Ahmadi, M. Soleymaniha, M. Shanbedi, FlatChem 8, 40–71 (2018)

    Article  CAS  Google Scholar 

  6. V. Chabot, B. Kim, B. Sloper, C. Tzoganakis, A. Yu, Sci. Rep. 3, 1378 (2013)

    Article  PubMed  PubMed Central  Google Scholar 

  7. C. Cozic, L. Picton, M.-R. Garda, F. Marlhoux, D. Le Cerf, Food Hydrocolloids 23, 1930–1934 (2009)

    Article  CAS  Google Scholar 

  8. X. Xiang, Y. Zhu, C. Gao, H. Du, C. Guo, Carbon Lett. 32, 557–566 (2022)

    Article  Google Scholar 

  9. C. Qiu, L. Jiang, Y. Gao, L. Sheng, Mater. Des. 230, 111952 (2023)

    Article  CAS  Google Scholar 

  10. W.S. Hummers, R.E. Offeman, J. Am. Chem. Soc. 80, 1339–1339 (1958)

    Article  CAS  Google Scholar 

  11. V.B. Mbayachi, E. Ndayiragije, T. Sammani, S. Taj, E.R. Mbuta, Results Chem. 3, 100163 (2021)

    Article  CAS  Google Scholar 

  12. H. Yu, B. Zhang, C. Bulin, R. Li, R. Xing, Sci. Rep. 6, 36143 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. L. Peng, Z. Xu, Z. Liu, Y. Wei, H. Sun, Z. Li et al., Nat. Commun. 6, 5716 (2015)

    Article  CAS  PubMed  Google Scholar 

  14. Z. Sofer, J. Luxa, O. Jankovský, D. Sedmidubský, T. Bystroň, M. Pumera, Angew. Chem. Int. Ed. 55, 11965–11969 (2016)

    Article  CAS  Google Scholar 

  15. Z. Benzait, P. Chen, L. Trabzon, Nanoscale Adv. 3, 223–230 (2021)

    Article  CAS  PubMed  Google Scholar 

  16. D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev et al., ACS Nano 4, 4806–4814 (2010)

    Article  CAS  PubMed  Google Scholar 

  17. I. Sengupta, S. Chakraborty, M. Talukdar, S.K. Pal, S. Chakraborty, J. Mater. Res. 33, 4113–4122 (2018)

    Article  CAS  Google Scholar 

  18. S. Pei, H.-M. Cheng, Carbon 50, 3210–3228 (2012)

    Article  CAS  Google Scholar 

  19. S. Dungani, D. Anadkat, A. Pandya, A.V. Sanchela, Flex. Print. Electron. 9, 015008 (2024)

    Article  Google Scholar 

  20. A.V. Sanchela, M. Wei, H.J. Cho, H. Ohta, Small 15, 1805394 (2019)

    Article  Google Scholar 

  21. D. Anadkat, C. Badampudi, A. Gor, A.V. Sanchela, J. Alloys Compd. 958, 170350 (2023)

    Article  CAS  Google Scholar 

  22. V. Uvarov, Popov, Mater. Charact. 85, 111–123 (2013)

    Article  CAS  Google Scholar 

  23. C. Su, M. Acik, K. Takai, J. Lu, S.J. Hao, Y. Zheng et al., Nat. Commun. 3, 1298 (2012)

    Article  PubMed  Google Scholar 

  24. B.C. Smith, Spectroscopy 37, 17–19 (2022)

    Article  Google Scholar 

  25. N.D.K. Tu, J. Choi, C.R. Park, H. Kim, Chem. Mater. 27, 7362–7369 (2015)

    Article  Google Scholar 

  26. B. Lesiak, G. Trykowski, J. Tóth, S. Biniak, L. Kövér, N. Rangam et al., J. Mater. Sci. 56, 3738–3754 (2021)

    Article  CAS  Google Scholar 

  27. T. Islam, Md.M. Hasan, S. Sarker, A.J.S. Ahammad, ACS Omega 8, 14013–14024 (2023)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. A.C. Ferrari, J. Robertson, Phys. Rev. B 61, 14095–14107 (2000)

    Article  CAS  Google Scholar 

  29. S. Claramunt, A. Varea, D. Lopez-Diaz, M.M. Velázquez, A. Cornet, A. Cirera, J. Phys. Chem. C 119, 10123–10129 (2015)

    Article  CAS  Google Scholar 

  30. S. Vollebregt, R. Ishihara, F.D. Tichelaar, Y. Hou, C.I.M. Beenakker, Carbon 50, 3542–3554 (2012)

    Article  CAS  Google Scholar 

  31. P. Das, S. Ibrahim, K. Chakraborty, S. Ghosh, T. Pal, Sci. Rep. 14, 294 (2024)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. J. Tauc, R. Grigorovici, A. Vancu, Physica Status Solidi (b) 15, 627–637 (1966)

    Article  CAS  Google Scholar 

  33. Y. Jin, Y. Zheng, S.G. Podkolzin, W.J. Lee, Mater. Chem. C 8, 4885–4894 (2020)

    Article  CAS  Google Scholar 

  34. H. Huang, Z. Li, J. She, W. Wang, J. Appl. Phys. 111, 054317 (2012)

    Article  Google Scholar 

  35. W.-D. Yang, Y.-J. Lin, J. Electr. Eng. 70, 101–106 (2019)

    Google Scholar 

  36. M. Karakoti, R. Jangra, S. Pandey, P.S. Dhapola, S. Dhali, S. Mahendia et al., High Perform. Polym. 32, 175–182 (2020)

    Article  CAS  Google Scholar 

  37. F. Farivar, P. Lay Yap, R.U. Karunagaran, D. Losic, C 7, 41 (2021)

    CAS  Google Scholar 

  38. J.-H. Kim, S.-H. Kim, B.-J. Kim, H.-M. Lee, Nanomaterials 13, 262 (2023)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was supported by financial support from the Department of Physics, School of Energy Technology, Pandit Deendayal Energy University (R&D/SRP-2022-025)). We thank to Solar Research and Development Centre, Pandit Deendayal Energy University for structural and optical measurements. Further, we extend our thanks to department of Materials Engineering, Indian Institute of Technology, Gandhinagar for TGA measurement.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: A.V.S.; Sample preparation and measurements: D.A. A.P., A.J., and S.D.; Original draft preparation: D.A. and S.D.; Data analysis and Methodology: A.V.S, D.A., A.J., S.D., and A.P.; Writing – review & editing: A.V.S., D.A.; Supervision: A.V.S.

Corresponding authors

Correspondence to Devang Anadkat or Anup V. Sanchela.

Ethics declarations

Conflict of interset

There are no conflicts of interset to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anadkat, D., Pandya, A., Jaiswal, A. et al. Experimental comparison between graphene and reduced graphene oxide along with significant conversion of rGO from n-to p-type. J Mater Sci: Mater Electron 35, 821 (2024). https://doi.org/10.1007/s10854-024-12591-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12591-8

Navigation