Skip to main content
Log in

Broadband near-infrared luminescence properties of fluoride phosphor K3AlF6:Cr3+

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Near-infrared light can be widely used in non-destructive testing, sensing, and night vision. Recently, phosphor-converted LED (pc-LED) based on near-infrared (NIR) phosphor have attracted considerable interest. In this work, tetragonal structured K3AlF6:Cr3+ phosphors were synthesized using the co-precipitation method. Cr3+ ions occupy the octahedral position, and its Dq/B value (the parameter describing the crystal field strength) is calculated to be 2.08, suggesting a weak crystal field. Upon blue light excitation (430 nm), a broadband NIR emission is observed in the range of 650–900 nm, corresponding to the spin-allow 4T2 → 4A2 transition. Increasing Cr3+ concentration, red-shift is observed in its NIR emission with the maximum emission intensity at 5 mol% Cr3+. Its activation energy ΔE is calculated to be 0.14 eV. Combining with blue InGaN chips, the fabricated NIR pc-LEDs based on K3AlF6:Cr3+ phosphor exhibit excellent optoelectronic performance, showing potential applications in biological detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The raw/processed data required to reproduce these findings cannot be shared at this time as the data also forms part of an ongoing study, but the data are available on request from the corresponding author.

References

  1. J. Qiao, G. Zhou, Y. Zhou, Q. Zhang, Z. Xia, Nat. Commun. 10, 5267 (2019)

    PubMed  PubMed Central  Google Scholar 

  2. H. Yu, J. Chen, R. Mi, J. Yang, Y.-G. Liu, Chem. Eng. J. 417, 12927 (2021)

    Google Scholar 

  3. C. Dincer, R. Bruch, E. Costa-Rama, M.T. Fernandez-Abedu, A. Merkoci, A. Manz, G.A. Urban, F. Guder, Adv. Mater. 31, 1806739 (2019)

    Google Scholar 

  4. M.-H. Fang, K.-C. Chen, N. Majewska, T. Lesniewski, S. Mahlik, G. Leniec, S.M. Kaczmarek, C.-W. Yang, K.-M. Lu, H.-S. Sheu, R.-S. Liu, ACS Energy Lett. 6, 109–114 (2021)

    CAS  Google Scholar 

  5. L. Yao, Q. Shao, S. Han, C. Liang, J. He, J. Jiang, Chem. Mater. 32, 2430–2439 (2020)

    CAS  Google Scholar 

  6. V. Rajendran, M.-H. Fang, G.N. De Guzman, T. Lesniewski, S. Mahlik, M. Grinberg, G. Leniec, S.M. Kaczmarek, Y.-S. Lin, K.-M. Lu, C.-M. Lin, H. Chang, S.-F. Hu, R.-S. Liu, ACS Energy Lett. 3, 2679–2684 (2018)

    CAS  Google Scholar 

  7. M. Manley, Chem. Soc. Rev. 43, 8200–8214 (2014)

    CAS  PubMed  Google Scholar 

  8. Y. Zhang, Y. Liang, S. Miao, D. Chen, S. Yan, J. Liu, Inorg. Chem. Front. 8, 5186–5194 (2021)

    CAS  Google Scholar 

  9. Y. Chen, R. Zeng, Q. Wei, S. Zhang, B. Luo, C. Chen, X. Zhu, S. Cao, B. Zou, J.Z. Zhang, J. Phys. Chem. Lett. 13, 8529–8536 (2022)

    CAS  PubMed  Google Scholar 

  10. D. Huang, H. Zhu, Z. Deng, H. Yang, J. Hu, S. Liang, D. Chen, E. Ma, W. Guo, J. Mater. Chem. C 9, 164–172 (2021)

    CAS  Google Scholar 

  11. M. Mao, T. Zhou, H. Zeng, L. Wang, F. Huang, X. Tang, R.-J. Xie, J. Mater. Chem. C 8, 1981–1988 (2020)

    CAS  Google Scholar 

  12. D. An, L. Zhang, Z. Liu, J. Liu, Y. Wei, Crit. Rev. Food Sci. Nutr. 63, 9766–9796 (2023)

    CAS  PubMed  Google Scholar 

  13. B. Mortada, M. Medhat, Y.M. Sabry, M. Sadek, A. Shebl, K. Hassan, M. El-Masry, Y. Nada, M. Anwar, M. Gad, M.H. Al Haron, B. Saadany, D. Khalil, T. Bourouina, IEEE J. Sel. Top. Quantum Electron 27, 1–9 (2021)

    Google Scholar 

  14. C. Wang, X. Wang, Y. Zhou, S. Zhang, C. Li, D. Hu, L. Xu, H. Jiao, A.C.S. Appl, Electron. Mater. 1, 1046–1053 (2019)

    CAS  Google Scholar 

  15. X.R. Cheng, X.B. Dong, K. Peng, H.J. Zhang, Y.L. Su, L.Y. Jiang, J. Mater. Sci. Mater. Electron. 49, 518–523 (2020)

    CAS  Google Scholar 

  16. Z. Ristić, V. Đorđević, M. Medić, S. Kuzman, M.G. Brik, Ž Antić, M.D. Dramićanin, Opt. Mater. 120, 111468 (2021)

    Google Scholar 

  17. C. Yuan, R. Li, Y. Liu, L. Zhang, J. Zhang, G. Leniec, P. Sun, Z. Liu, Z. Luo, R. Dong, J. Jiang, Laser Photonics Rev. 15, 2100227 (2021)

    CAS  Google Scholar 

  18. H. Jiang, L. Chen, G. Zheng, Z. Luo, X. Wu, Z. Liu, R. Li, Y. Liu, P. Sun, J. Jiang, Adv. Opt. Mater. 10, 2102741 (2022)

    CAS  Google Scholar 

  19. Z. Jia, C. Yuan, Y. Liu, X.-J. Wang, P. Sun, L. Wang, H. Jiang, J. Jiang, Light Sci. Appl. 9, 86 (2020)

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Z. Zeng, Y. Xu, Z. Zhang, Z. Gao, M. Luo, Z. Yin, C. Zhang, J. Xu, B. Huang, F. Luo, Y. Du, C. Yan, Chem. Soc. Rev. 49, 1109–1143 (2020)

    CAS  PubMed  Google Scholar 

  21. S. Nishimura, Y. Nanai, S. Koh, S. Fuchi, J. Mater. Sci. Mater. Electron. 32, 14813–14822 (2021)

    CAS  Google Scholar 

  22. X. Dong, H. Zhang, Y. Yang, S. Feng, Z. Wang, C. Yuan, K. Yang, X. Cheng, J. Mol. Struct. 1229, 129593 (2021)

    CAS  Google Scholar 

  23. X. Zhou, J. Xiang, J. Zheng, X. Zhao, H. Suo, C. Guo, Mater. Chem. Front. 5, 4334–4342 (2021)

    CAS  Google Scholar 

  24. S. Adachi, J. Lumin. 234, 117965 (2021)

    CAS  Google Scholar 

  25. E. Song, H. Ming, Y. Zhou, F. He, J. Wu, Z. Xia, Q. Zhang, Laser Photonics Rev. 15, 2000410 (2021)

    CAS  Google Scholar 

  26. N. Thanh Phuong, N. Long Giang, D. Huu Phuc, N. Ngoc Diem, Opt. Mater. 143, 114145 (2023)

    CAS  Google Scholar 

  27. J.A. Lai, J. Qiu, Q. Wang, D. Zhou, Z. Long, Y. Yang, S. Hu, X. Li, J. Pi, J. Wang, Inorg. Chem. Front. 7, 2313–2321 (2020)

    CAS  Google Scholar 

  28. T. Gao, W. Zhuang, R. Liu, Y. Liu, C. Yan, X. Chen, Cryst. Growth Des. 20, 3851–3860 (2020)

    CAS  Google Scholar 

  29. P. Dang, Y. Wei, D. Liu, G. Li, J. Lin, Adv. Opt. Mater. 11, 2201739 (2023)

    CAS  Google Scholar 

  30. Z. Pan, Y.-Y. Lu, F. Liu, Nat. Mater. 11, 58–63 (2012)

    CAS  Google Scholar 

  31. N.T.K. Chi, N.V. Quang, N.T. Tuan, N.D.T. Kien, D.Q. Trung, P.T. Huy, T. Phuong Dinh, D.H. Nguyen, J. Mater. Sci. Mater. Electron 48, 5891–5899 (2019)

    CAS  Google Scholar 

  32. V. Rajendran, T. Lesniewski, S. Mahlik, M. Grinberg, G. Leniec, S.M. Kaczmarek, W.-K. Pang, Y.-S. Lin, K.-M. Lu, C.-M. Lin, H. Chang, S.-F. Hu, R.-S. Liu, ACS Photonics 6, 3215–3224 (2019)

    CAS  Google Scholar 

  33. G.A. Torchia, D. Schinca, D. Schinca, N.M. Khaidukov, J.O. Tocho, Opt. Mater. 20, 301–304 (2002)

    CAS  Google Scholar 

  34. F. Zhao, Z. Song, Q. Liu, Laser Photonics Rev. 16, 2200380 (2022)

    CAS  Google Scholar 

  35. B. Malysa, A. Meijerink, T. Jüstel, J. Lumin. 202, 523–531 (2018)

    CAS  Google Scholar 

  36. F. He, E. Song, Y. Zhou, H. Ming, Z. Chen, J. Wu, P. Shao, X. Yang, Z. Xia, Q. Zhang, Adv. Funct. Mater. 31, 2103743 (2021)

    CAS  Google Scholar 

  37. Yu. Haojun, Juyu Yang, Yan-gai Liu, Ci.’an Xie, Zhaohui Huang, Lefu Mei, ACS Sustain. Chem. Eng. 10, 8022–8030 (2022)

    Google Scholar 

  38. A.M. Abakumov, G. King, V.K. Laurinavichute, M.G. Rozova, P.M. Woodward, E.V. Antipov, Inorg. Chem. 48, 9336–9344 (2009)

    CAS  PubMed  Google Scholar 

  39. G. King, A.M. Abakumov, P.M. Woodward, A. Llobet, A.A. Tsirlin, D. Batuk, E.V. Antipov, Inorg. Chem. 50, 7792–7801 (2011)

    CAS  PubMed  Google Scholar 

  40. C. Lee, Z. Bao, M.-H. Fang, T. Lesniewski, S. Mahlik, M. Grinberg, G. Leniec, S.M. Kaczmarek, M.G. Brik, Y.-T. Tsai, T.-L. Tsai, R.-S. Liu, Inorg. Chem. 59, 376–385 (2020)

    CAS  PubMed  Google Scholar 

  41. A. Patra, R.E. Tallman, B.A. Weinstein, Opt. Mater. 27, 1396–1401 (2005)

    CAS  Google Scholar 

  42. Q. Song, Z. Liu, H. Jiang, Z. Luo, P. Sun, G. Liu, Y. Liu, H. Jiang, J. Jiang, J. Am. Ceram. Soc. 104, 5235–5243 (2021)

    CAS  Google Scholar 

  43. R.S. Quimby, W.J. Miniscalco, B. Thompson, J. Appl. Phys. 76, 4472–4478 (1994)

    CAS  Google Scholar 

  44. G.N.A. De Guzman, M.-H. Fang, C.-H. Liang, Z. Bao, S.-F. Hu, R.-S. Liu, J. Lumin. 219, 116944 (2020)

    Google Scholar 

  45. B. Struve, G. Huber, Appl. Phys. B 36, 195–201 (1985)

    Google Scholar 

  46. B. Henderson, G.F. Imbusch, Optical spectroscopy of inorganic solids (Oxford University Press, Oxford, 2006)

    Google Scholar 

  47. H. Zeng, T. Zhou, L. Wang, R.-J. Xie, Chem. Mater. 31, 5245–5253 (2019)

    CAS  Google Scholar 

  48. S. Bhushan, M.V. Chukichev, J. Mater. Sci. Lett. 7, 319–321 (1988)

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation of China (No. 12104415), China Postdoctoral Science Foundation (No.2022M721301), Postdoctoral Science Foundation of Henan Henan Province (No.202103102), Key Research Project of Department of Science and Technology in Henan Province (No. 222102230012, No. 232102230125, No. 232102231057, No. 232102230151 and No. 222102210180).

Funding

This work was funded by Innovative Research Group Project of the National Natural Science Foundation of China, 12104415, Yongfu Liang.

Author information

Authors and Affiliations

Authors

Contributions

Junbo Wang: writing original draft. Xuerui Cheng: investigation and editing. Huanjun Zhang: software and analysis. Haining Li: methodology and measurement. Yongfu Liang: formal analysis and investigation. Xiang Zhu: material synthesis. Zheng Wang: validation.

Corresponding authors

Correspondence to Xuerui Cheng or Huanjun Zhang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Cheng, X., Zhang, H. et al. Broadband near-infrared luminescence properties of fluoride phosphor K3AlF6:Cr3+. J Mater Sci: Mater Electron 35, 787 (2024). https://doi.org/10.1007/s10854-024-12533-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12533-4

Navigation