Skip to main content
Log in

Impact of hot isostatic pressing on the microstructure and current-carrying capacity of Bi-2212 wires

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

We have successfully utilized an hot isostatic pressing (HIP) technique to fabricate Bi2Sr2CaCu2O8+δ (Bi-2212) wires under 50 bar pressure, resulting in a significant enhancement of their current-carrying capacity by nearly 2.5 times. Our study compares the microstructure and superconducting properties of the wires processed under HIP and atmospheric pressure. The results demonstrate that the critical current density (JC) of the wires treated with HIP increases from 1416 A mm−2 (at 1 bar) to 3592 A mm−2 at 4.2 K and 5 T. Initially, this increase was attributed to the reduction of void regions in the wires treated under 50 bar HIP. However, further analysis revealed that the decrease in voids resulting from HIP only accounts for 23% of the total increase in JC, implying that density improvement plays a minor role in the overall JC enhancement. In comparison to the wires processed under atmospheric pressure, the current-carrying ability of the wires treated with HIP is significantly enhanced due to the combined effect of void reduction and the dendritic structure surrounding the Bi-2212 filaments. By increasing the cooling rate from 2.5 h−1 to 5 °C h−1, we further increased the engineering critical current density (JE) of the Bi-2212 wires by 20%, reaching 975 A mm−2 (at 4.2 K and 5 T). This improvement is attributed to the effective reduction of the dendritic structure surrounding the filaments in the wires treated under 50 bar HIP, achieved by adjusting the grain growth rate during the cooling process. These findings provide valuable insights for the development of high-performance Bi-2212 wires for superconducting applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. D.C. Larbalestier, J. Jiang, U.P. Trociewitz, F. Kametani, C. Scheuerlein, M. Dalban-Canassy, M. Matras, P. Chen, N.C. Craig, P.J. Lee, E.E. Hellstrom, Isotropic round-wire multifilament cuprate superconductor for generation of magnetic fields above 30T. Nat. Mater. 13(375), 81–88 (2014). https://doi.org/10.1038/nmat3887

    Article  CAS  Google Scholar 

  2. Y. Kim, U.P. Trociewitz, E.S. Bosque, D. Davis, L. English, E. Hellstrom, J. Jiang, F. Kametani, E. Martin, J. Jones, A. Juliao, G. Bradford, S. Barua, I. Hossain, G.M.Y. Oz, J. Gillman, J.L.J. Lu, L.C.P. Lee, D.C. Larbalestier, Bi-2212 coil technology development efforts at the national high magnetic field laboratory, international conference on magnet technology, MT26:Mon-Mo-Or2-04 (2019)

  3. A. Godeke, High temperature superconductors for commercial magnets. Supercond. Sci. Technol. 36(11), 113001 (2023). https://doi.org/10.1088/1361-6668/acf901

    Article  Google Scholar 

  4. T. Shen, L.G. Fajardo, C. Myers, A. Hafalia Jr., J.L.R. Fernández, D. Arbelaez, L. Brouwer, S. Caspi, P. Ferracin, S. Gourlay, Design, fabrication, and characterization of a high-field high-temperature superconducting Bi-2212 accelerator dipole magnet. Phys. Rev. Accel. Beams 25(12), 122401 (2022). https://doi.org/10.1103/PhysRevAccelBeams.25.122401

    Article  CAS  Google Scholar 

  5. J. Rochester, C. Myers, T. Shen, M. Majoros, E. Collings, M. Sumption, Flux creep in a Bi-2212 Rutherford cable for particle accelerator applications. IEEE Trans. Appl. Supercond. 32(4), 6400205 (2022). https://doi.org/10.1109/TASC.2022.3159267

    Article  CAS  Google Scholar 

  6. Z.-C. Zhang, D.-S. Yang, H.-S. Zhou, J.-G. Qin, G.-N. Luo, Degradation mechanism of the superconducting performance of a Bi2212 cable under magnetic fields. Supercond. Sci. Technol. 35(3), 035004 (2022). https://doi.org/10.1088/1361-6668/ac4ad2

    Article  Google Scholar 

  7. D. Yang, M. Yu, H. Ma, Z. Zhang, M. Wang, S. Liu, H. Jin, P. Gao, C. Zhou, F. Liu, H. Liu, Q. Hao, C. Li, S. Kanazawa, W. Chen, A. Nijhuis, J. Li, J. Qin, Performance of first Bi-2212 cable with pre-over pressure and over pressure heat treatment. Supercond. Sci. Technol. 35(1), 015007 (2022). https://doi.org/10.1088/1361-6668/ac30ea

    Article  Google Scholar 

  8. C. Tarantini, S. Barua, T.A. Oloye, F. Kametani, J. Jiang, E.E. Hellstrom, D.C. Larbalestier, Variation of effective filament diameter, irreversibility field, anisotropy, and pinning efficiency in Bi-2212 round wires. Supercond. Sci. Technol. 37(1), 015021 (2023). https://doi.org/10.1088/1361-6668/ad13b2

    Article  Google Scholar 

  9. H. Miao, K.R. Marken, M. Meinesz, B. Czabaj, S. Hong, M.O. Rike, J. Bock, Studies of precursor composition effect on Jc in Bi-2212/Ag wires and tapes. Adv. Cryog. Eng. 50B, 673–682 (2005). https://doi.org/10.1063/1.2192409

    Article  Google Scholar 

  10. J. Jiang, G. Bradford, S.I. Hossain, M.D. Brown, J. Cooper, E. Miller, Y. Huang, H. Miao, J.A. Parrell, M. White, A. Hunt, S. Sengupta, R. Revur, T. Shen, F. Kametani, U.P. Trociewitz, E.E. Hellstrom, D.C. Larbalestier, High-performance Bi-2212 round wires made with recent powders. IEEE Trans. Appl. Supercond. 29(5), 6400405 (2019). https://doi.org/10.1109/TASC.2019.2895197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Q.B. Hao, C.S. Li, S.N. Zhang, L.F. Bai, G.S. Li, G.Q. Liu, P.X. Zhang, Improve the uniformity of the cores and Je of Bi-2212 wires. Phys. Procedia 58, 166–169 (2014). https://doi.org/10.1016/j.phpro.2014.09.036

    Article  CAS  Google Scholar 

  12. X. Liu, J. Liu, B. Shao, S. Zhang, Y. Zhang, H. Li, W. Zhang, H. Cao, J. Feng, C. Li, Improving Bi-2212 multi-filament wire quality and superconductivity by cryogenic drawing. J. Alloys Compd. 922, 166304 (2022). https://doi.org/10.1016/j.jallcom.2022.166304

    Article  CAS  Google Scholar 

  13. T. Shen, J. Jiang, F. Kametani, U.P. Trociewitz, D.C. Larbalestier, J. Schwartz, E.E. Hellstrom, Filament to filament bridging and its influence on developing high critical current density in multifilamentary Bi2Sr2CaCu2Ox round wires. Supercond. Sci. Technol. 23, 025009 (2010). https://doi.org/10.1088/0953-2048/23/2/025009

    Article  CAS  Google Scholar 

  14. W. Zhang, E.A. Goodilin, E.E. Hellstrom, Composition studies for Ag-sheathed Bi2Sr2CaCu2O8 conductors processed in 100% O2. Supercond. Sci. Technol. 8, 211–217 (1996). https://doi.org/10.1088/0953-2048/9/3/014

    Article  Google Scholar 

  15. F. Kametani, T. Shen, J. Jiang, C. Scheuerlein, A. Malagoli, M.D. Michiel, Y. Huang, H. Miao, J.A. Parrell, E.E. Hellstrom, D.C. Larbalestier, Bubble formation within filaments of melt-processed Bi2212 wires and its strongly negative effect on the critical current density. Supercond. Sci. Technol. 24, 075009 (2011). https://doi.org/10.1088/0953-2048/24/7/075009

    Article  CAS  Google Scholar 

  16. J. Kadar, C. Scheuerlein, M.O. Rikel, M.D. Michiel, Y. Huang, Comparison of microstructure, second phases and texture formation during melt processing of Bi-2212 mono- and multifilament wires. Supercond. Sci. Technol. 29, 105009 (2016). https://doi.org/10.1088/0953-2048/29/10/105009

    Article  CAS  Google Scholar 

  17. F. Kametani, J. Jiang, M. Matras, D. Abraimov, E.E. Hellstrom, D.C. Larbalestier, Comparison of growth texture in round Bi2212 and flat Bi2223 wires and its relation to high critical current density development. Sci. Rep. 5, 8258 (2015). https://doi.org/10.1038/srep08285

    Article  CAS  Google Scholar 

  18. A. Godeke, M.H.C. Hartman, M.G.T. Mentink, J. Jiang, M. Matras, E.E. Hellstrom, D.C. Larbalestier, Critical current of dense Bi-2212 round wires as a function of axial strain. Supercond. Sci. Technol. 28(3), 32001 (2015). https://doi.org/10.1088/0953-2048/28/3/032001

    Article  CAS  Google Scholar 

  19. M.R. Matras, J. Jiang, D.C. Larbalestier, E.E. Hellstrom, Understanding the densification process of Bi2Sr2CaCu2Ox round wires with overpressure processing and its effect on critical current density. Supercond. Sci. Technol. 29, 105005 (2016). https://doi.org/10.1088/0953-2048/29/10/105005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. E. Cecchetti, P.J. Ferreira, J.B.V. Sande, A model for texture development in BSCCO high-Tc superconductors. Supercond. Sci. Technol. 13, 1270–1278 (2000). https://doi.org/10.1088/0953-2048/13/8/326

    Article  CAS  Google Scholar 

  21. S. Yamashita, T. Kasai, T. Fujii, T. Watanabe, A. Matsuda, Control of carrier concentration in Bi-2212. Physica C Supercond. Appl. 470, S170–S172 (2010). https://doi.org/10.1016/j.physc.2009.11.065

    Article  CAS  Google Scholar 

  22. G. Naderi, J. Schwartz, Multiscale studies of processing-microstructure-transport relationships in over-pressure processed Bi2Sr2CaCu2Ox/Ag multifilamentary round wire. Supercond. Sci. Technol. 27(11), 115002 (2014). https://doi.org/10.1088/0953-2048/27/11/115002

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was by National Natural Science Foundation of China (No. 52277029), Nation Key R&D Program of China (No. 2021YFB3800201), Major Science and technology projects of Shaanxi Province (Nos. 2020zdzx04-04-02 and 2024GX-YBXM-403), Shaanxi Natural Science Foundation Project (No.2020JM-650).

Funding

Funding information is not applicable/No funding was received.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the conception and design of the study. [Xiaoyan Xu], [Qingbin Hao], [Gaofeng Jiao], [Kai Yao], and [Guoqing Liu] were involved in sample preparation. Data analysis was performed by [Xiaoyan Xu] and [Qingbin Hao]. The initial draft of the manuscript was revised by [Qingbin Hao] and [Xiaoyan Xu], and the entire process was supervised by [Chengshan Li]. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Qingbin Hao or Xiaoyan Xu.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Research involving human participants or animals

This paper contains no research involving human participants and/or animals.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hao, Q., Xu, X., Jiao, G. et al. Impact of hot isostatic pressing on the microstructure and current-carrying capacity of Bi-2212 wires. J Mater Sci: Mater Electron 35, 746 (2024). https://doi.org/10.1007/s10854-024-12480-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12480-0

Navigation