Skip to main content
Log in

Copper oxide-based anodes for highly sensitive electrochemical detection of amlodipine

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

A Correction to this article was published on 20 April 2024

This article has been updated

Abstract

Sensitive and reliable detection of the amlodipine (AML) drug in biological and environmental samples poses a significant challenge, necessitating the development of innovative electrode platforms. Herein, efficient anodes (CuO@ITO) were constructed for the direct electrochemical detection of AML in phosphate buffer saline (PBS) by growing CuO nanostructures onto the ITO electrode. Controlled nucleation of Cu ions facilitated consistent structural growth over the ITO surface, resulting in close interfacial contact between the nanostructures and the current collector. The fabricated CuO@ITO anode exhibited remarkable electrochemical oxidation response toward AML, enabling sensitive detection within a dynamic concentration range of 0.1–1.6 µm using differential pulse voltammetry, with a detection limit of 0.014 µm. Additionally, the sensor demonstrated robust anti-interference capabilities against various biomolecules and pharmaceutical drugs, ensuring accurate and reliable AML detection even in complex biological samples. Satisfactory recoveries of spiked AML drug from human urine samples affirmed the sensor’s suitability for real-world applications. The overall findings of this work emphasize the significance of the developed sensor in enabling the sensitive and selective detection of AML, making it a valuable tool for clinical and environmental monitoring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data supporting this study’s findings are available from the corresponding author upon reasonable request.

Change history

References

  1. G.P. Fard, R.E. Sabzi, Preparation of TiO2 Nanoparticles-Au nanoparticles-chitosan Nanocomposite Modified Pencil Graphite Electrode: application for Electrochemical Measurement of Amlodipine in Biological and Pharmaceutical samples. J. Anal. Chem. 78(6), 737–747 (2023)

    Article  CAS  Google Scholar 

  2. M. Firouzi, M. Najafi, Mesalazine Modified Carbon Paste Electrode for Voltammetric Determination of Amlodipine. J. Appl. Chem. Res. 17(2), 82–95 (2023)

    Google Scholar 

  3. N. Ziaie, M. Shabani-Nooshabadi, Introduction of AlV3O9/CNT nanocomposite for modification of the Electrochemical Sensor in Order the determination of Amlodipine and Hydrochlorothiazide in Biological and Pharmaceutical samples. Ind. Eng. Chem. Res. 62(11), 4481–4493 (2022)

    Article  Google Scholar 

  4. N. Motomura, Y. Yamazaki, X. Gao, Y. Tezuka, K. Omata, Y. Ono, R. Morimoto, F. Satoh, Y. Nakamura, J. Shim, Visualization of calcium channel blockers in human adrenal tissues and their possible effects on steroidogenesis in the patients with primary aldosteronism (PA). J. Steroid Biochem. Mol. Biol. 218, 106062 (2022)

    Article  CAS  PubMed  Google Scholar 

  5. R. Mao, Q. Rong, Clinical efficacy of amlodipine besylate combined with ligusticum on patients with both hypertension and heart failure and their prognosis and life quality. Curr. Top. Nutraceutical Res. (2022). https://doi.org/10.37290/ctnr2641-452X.20:276-281

    Article  Google Scholar 

  6. P. Liu, X. Wu, S. Pan, J. Dai, Z. Zhang, X. Guo, Photochlorination-induced degradation of microplastics and interaction with cr (VI) and amlodipine. Sci. Total Environ. 835, 155499 (2022)

    Article  CAS  PubMed  Google Scholar 

  7. B. Fu, J. Chen, Y. Cao, H. Li, F. Gao, D.-Y. Guo, F. Wang, Q. Pan, Post-modified metal-organic framework as ratiometric fluorescence-scattering probe for trace ciprofloxacin residue based on competitive coordination. Sens. Actuators B 369, 132261 (2022)

    Article  CAS  Google Scholar 

  8. H. Vardhan, L. Hou, E. Yee, A. Nafady, M.A. Al-Abdrabalnabi, A.M. Al-Enizi, Y. Pan, Z. Yang, S. Ma, Vanadium docked covalent-organic frameworks: an effective heterogeneous catalyst for modified mannich-type reaction. ACS Sustain. Chem. Eng. 7(5), 4878–4888 (2019)

    Article  CAS  Google Scholar 

  9. M. Sharma, C. Kothari, O. Sherikar, P. Mehta, Concurrent estimation of amlodipine besylate, hydrochlorothiazide and valsartan by RP-HPLC, HPTLC and UV–spectrophotometry. J. Chromatogr. Sci. 52(1), 27–35 (2014)

    Article  CAS  PubMed  Google Scholar 

  10. S. Hillaert, Van den W. Bossche, Simultaneous determination of hydrochlorothiazide and several angiotensin-II-receptor antagonists by capillary electrophoresis. J. Pharm. Biomed. Anal. 31(2), 329–339 (2003)

    Article  CAS  PubMed  Google Scholar 

  11. S.M.Z. Al-Kindy, A. Al‐Snedi, F.E.O. Suliman, H.A. Al‐Lawati, J. determination of amlodipine using terbium‐sensitized luminescence in the presence of europium (III) as a co‐luminescence reagent. Luminescence. 29(6), 657–662 (2014)

    Article  CAS  PubMed  Google Scholar 

  12. J. Men, C. Dong, H. Shi, Y. Han, Y. Yang, R. Wang, X. Wang, J. Chen, Surface molecular imprinted membranes as a gate for selective transdermal release of chiral drug amlodipine. J. Membr. Sci. 664, 121059 (2022)

    Article  CAS  Google Scholar 

  13. K.M.M. Kabir, Y.M. Sabri, A.E. Kandjani, G.I. Matthews, M. Field, L.A. Jones, A. Nafady, S.J. Ippolito, S.K. Bhargava, Mercury sorption and desorption on gold: a comparative analysis of surface acoustic wave and quartz crystal microbalance-based sensors. Langmuir. 31(30), 8519–8529 (2015)

    Article  CAS  PubMed  Google Scholar 

  14. R.N. Goyal, S. Bishnoi, Voltammetric determination of amlodipine besylate in human urine and pharmaceuticals. Bioelectrochemistry. 79(2), 234–240 (2010)

    Article  CAS  PubMed  Google Scholar 

  15. J. Kumar, R.R. Neiber, Z. Abbas, R.A. Soomro, A. BaQais, M.A. Amin, Z.M. El-Bahy, Hierarchical NiMn-LDH hollow spheres as a Promising Pseudocapacitive Electrode for Supercapacitor Application. Micromachines. 14(2), 487 (2023)

    Article  PubMed  PubMed Central  Google Scholar 

  16. R.A. Soomro, J. Kumar, R.R. Neiber, A.M. Alotaibi, S.F. Shaikh, N. Ahmed, A. Nafady, Natural oxidation of Ti3C2Tx to construct efficient TiO2/Ti3C2Tx photoactive heterojunctions for advanced photoelectrochemical biosensing of folate-expressing cancer cells. Anal. Chim. Acta. 1251, 341016 (2023)

    Article  CAS  PubMed  Google Scholar 

  17. N. Fathima, R.K. Jha, N. Bhat, Co3O4/MoS2 nanostructures for NOx Sensing. ACS Appl. Nano Mater. 5(6), 7754–7766 (2022)

    Article  CAS  Google Scholar 

  18. D. Zhao, C. Geng, X. Liu, X. Jin, Z. Zhao, Y. Liu, S. Alwarappan, Photoelectrochemical detection of superoxide anions released from mitochondrial in HepG2 cells based on the synergistic effect of MnO2@Co3O4 core-shell pn heterojunction. Biosens. Bioelectron. 237, 115368 (2023)

    Article  CAS  PubMed  Google Scholar 

  19. Y. Shi, C. Gimbert-Suriñach, T. Han, S. Berardi, M. Lanza, A. Llobet, CuO-functionalized silicon photoanodes for photoelectrochemical water splitting devices. ACS Appl. Mater. Interfaces. 8(1), 696–702 (2016)

    Article  CAS  PubMed  Google Scholar 

  20. S. Velmurugan, J. Anupriya, S.-M. Chen, Y.-B. Hahn, Efficient lock-in CuO/WON heterostructures tailored for highly sensitive electrochemical detection of hazardous herbicide diuron in fruit juices and aqua region. Sens. Actuators B 375, 132920 (2023)

    Article  CAS  Google Scholar 

  21. S.B. Arpitha, B.E.K. Swamy, J.K. Shashikumara, An efficient electrochemical sensor based on ZnO/Co3O4 nanocomposite modified carbon paste electrode for the sensitive detection of hydroquinone and resorcinol. Inorg. Chem. Commun. 152, 110656 (2023)

    Article  CAS  Google Scholar 

  22. H. Spahr, T. Bülow, C. Nowak, F. Hirschberg, J. Reinker, S. Hamwi, H.-H. Johannes, W. Kowalsky, Impact of morphological defects on the electrical breakdown of ultra thin atomic layer deposition processed Al2O3 layers. Thin Solid Films. 534, 172–176 (2013)

    Article  CAS  Google Scholar 

  23. R. Kumar, S. Sahoo, E. Joanni, R. Pandey, J.-J. Shim, Vacancy designed 2D materials for electrodes in energy storage devices. Chem. Commun. 59(41), 6109–6127 (2023)

    Article  CAS  Google Scholar 

  24. I.A. Gass, C.J. Gartshore, D.W. Lupton, B. Moubaraki, A. Nafady, A.M. Bond, J.F. Boas, J.D. Cashion, C. Milsmann, K. Wieghardt, Anion dependent redox changes in iron bis-terdentate nitroxide {NNO} chelates. Inorg. Chem. 50(7), 3052–3064 (2011)

    Article  CAS  PubMed  Google Scholar 

  25. F. Guo, H. Yang, L. Liu, Y. Han, A.M. Al-Enizi, A. Nafady, P.E. Kruger, S.G. Telfer, S. Ma, Hollow capsules of doped carbon incorporating metal@ metal sulfide and metal@ metal oxide core–shell nanoparticles derived from metal–organic framework composites for efficient oxygen electrocatalysis. J. Mater. Chem. A 7(8), 3624–3631 (2019)

    Article  CAS  Google Scholar 

  26. G. Ersu, Y. Sozen, E. Sánchez-Viso, S. Kuriakose, B.H. Juárez, F.J. Mompean, M. Garcia-Hernandez, L. Visscher, A.J. Magdaleno, F. Prins, Pen Plotter as a Low-Cost Platform for Rapid Device Prototyping with Solution‐Processable Nanomaterials. Adv. Eng. Mater. 25(14), 2300226 (2023)

    Article  CAS  Google Scholar 

  27. A. Nafady, M.D. Albaqami, A.M. Alotaibi, CuO nanoparticles embedded in conductive PANI framework for periodic detection of alcohol from sweat. Colloid Polym. Sci. 301(5), 517–526 (2023)

    Article  CAS  Google Scholar 

  28. M. Yuksel, J.R. Pennings, F. Bayansal, J.T.W. Yeow, Effect of B-doping on the morphological, structural and optical properties of SILAR deposited CuO films. Phys. B: Condens. Matter. 599, 412578 (2020)

    Article  CAS  Google Scholar 

  29. O. Prakash, S. Kumar, P. Singh, V. Deckert, S. Chatterjee, A.K. Ghosh, R.K. Singh, Surface-enhanced Raman scattering characteristics of CuO: Mn/Ag heterojunction probed by methyl orange: effect of Mn2 + doping. J. Raman Spectrosc. 47(7), 813–818 (2016)

    Article  CAS  Google Scholar 

  30. M.A.M. Patwary, M.A. Hossain, B.C. Ghos, J. Chakrabarty, S.R. Haque, S.A. Rupa, J. Uddin, T. Tanaka, Copper oxide nanostructured thin films processed by SILAR for optoelectronic applications. RSC Adv. 12(51), 32853–32884 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. R.A. Soomro, N.H. Kalwar, A. Avci, E. Pehlivan, K.R. Hallam, M. Willander, In-situ growth of NiWO4 saw-blade-like nanostructures and their application in photo-electrochemical (PEC) immunosensor system designed for the detection of neuron-specific enolase. Biosens. Bioelectron. 141, 111331 (2019)

    Article  CAS  PubMed  Google Scholar 

  32. T. Lei, A. Khan, J. Yousaf, A. Deifalla, F. Pan, A.H. Ragab, A. Sayqal, M. Khan, M.Z. Ansari, Y. Khan, Heterogeneous nucleation and growth of interlaced CuO nanosheets on porous nickel foams as binder-free electrode material. J. Mater. Res. Technol. 24, 7865–7875 (2023)

    Article  CAS  Google Scholar 

  33. J.N.O. Amu-Darko, S. Hussain, X. Zhang, M. Ouladsmane, E. Issaka, S. Ali, M. Wang, G. Qiao, Exploring the gas-sensing properties of MOF-derived TiN@ CuO as a hydrogen sulfide sensor. Chemosphere 337, 139401 (2023)

    Article  CAS  PubMed  Google Scholar 

  34. R.A. Soomro, A. Nafady, Z.H. Ibupoto, S.T.H. Sirajuddin; Sherazi, M. Willander, Abro, M. I. Development of sensitive non-enzymatic glucose sensor using complex nanostructures of cobalt oxide. Mater. Sci. Semiconduct. Process. 34, 373–381 (2015)

    Article  CAS  Google Scholar 

  35. da E.M. Silva, de G.C. Oliveira, de A.B. Siqueira, A.J. Terezo, M. Castilho, Development of a composite electrode based on graphite and polycaprolactone for the determination of antihypertensive drugs. Microchem. J. 158, 105228 (2020)

    Article  Google Scholar 

  36. G.R. Mansano, A.P.P. Eisele, L.H. Dall’Antonia, S. Afonso, E.R. Sartori, Electroanalytical application of a boron-doped diamond electrode: improving the simultaneous voltammetric determination of amlodipine and valsartan in urine and combined dosage forms. J. Electroanal. Chem. 738, 188–194 (2015)

    Article  CAS  Google Scholar 

  37. M. Khairy, A.A. Khorshed, F.A. Rashwan, G.A. Salah, H.M. Abdel-Wadood, C.E. Banks, Sensitive determination of amlodipine besylate using bare/unmodified and DNA-modified screen-printed electrodes in tablets and biological fluids. Sens. Actuators B 239, 768–775 (2017)

    Article  CAS  Google Scholar 

  38. M. Khairy, A.A. Khorshed, Simultaneous voltammetric determination of two binary mixtures containing propranolol in pharmaceutical tablets and urine samples. Microchem. J. 159, 105484 (2020)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We extend our sincere appreciation to the Researchers Supporting Project number (RSP2024R266) at King Saud University, Riyadh, Saudi Arabia, for funding this work.

Funding

We extend our sincere appreciation to the Researchers Supporting Project number (RSP2024R266) at King Saud University, Riyadh, Saudi Arabia, for funding this work.

Author information

Authors and Affiliations

Authors

Contributions

Material preparation, data collection and analysis were performed by NUk and HIS. The first draft of the manuscript was written and revised by NHK, MY, and RAS. JL and SK supervised and commented on previous versions of the manuscript. AN facilitated in generation of electrochemical measurements, revised the final version, and facilitated in funding acquisition for this project. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Nazar Hussain Kalwar or Selcan Karakuş.

Ethics declarations

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 769.1 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

khan, N.U., Sahito, H.I., Kalwar, N.H. et al. Copper oxide-based anodes for highly sensitive electrochemical detection of amlodipine. J Mater Sci: Mater Electron 35, 712 (2024). https://doi.org/10.1007/s10854-024-12450-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12450-6

Navigation