Skip to main content
Log in

Photoluminescence spectra of nanocrystalline ZnO films obtained by magnetron deposition technique

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this article, the influence of the duration of high-temperature (T = 800 °C) annealing on the transformation of the defective structure and the morphology of thin films from arrays of ZnO nanocrystals synthesized by high-frequency magnetron sputtering was studied using the methods of photoluminescence and atomic force microscopy. On the basis of atomic force microscopy measurements, it was established that ZnO films consist of densely packed grains ranging in size from 40.5 to 49.1 nm. An increase in grain size to statistically significant values over 80 nm is observed as a result of annealing for 60 min. The influence of the high-temperature annealing duration on the transformation of PL spectra of exciton and defects bands and, accordingly, the defect structure of the nanocrystalline ZnO films was determined. In the PL spectra of ZnO nanocrystals, the lines of bound excitons (378 nm, 388 nm) are clearly distinguished in the ultraviolet region. In the visible region, the weak band at 468 nm and fairly intense bands at 559 nm and 683 nm appear, which are characteristic for nanostructured ZnO films obtained by magnetron sputtering. The nature of the specified PL bands is discussed. Differences in the dependence of the intensity of individual PL bands on the duration of annealing are explained by the competition of the recombination mechanisms on non-radiative (Zni) and radiative (OZn, VZnVO, VZn–2VO) defect centers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The authors declare that data supporting the findings of this study are available within the article.

References

  1. C. Jagadish, S. Pearton, Zinc oxide bulk, thin films and nanostructures, in Processing, properties and applications. (Elsevier, Amsterdam, 2006)

    Google Scholar 

  2. A. Tsukazaki, A. Ohtomo, M. Kawasaki, Appl. Phys. Lett. 88, 152106 (2006)

    Article  Google Scholar 

  3. W. Walukiewicz, Phys. Rev. B 50, 5221 (1994)

    Article  CAS  Google Scholar 

  4. M.M. Kha, J. Ind. Res. Tech. 1, 135–146 (2011)

    Google Scholar 

  5. A. Dev, A. Elshaer, T. Voss, IEEE. J. Selected Top. Quantum Electron. 17, 896 (2011)

    Article  CAS  Google Scholar 

  6. I. Wallace, O.V. Eshu, O.B. Chukwunonso, U.C. Okoro, J. Nanomed. Nanotechnol. 6, 5 (2015)

    Google Scholar 

  7. D.V. Korbutyak, O.G. Kosinov, B.N. Kulchitskiy, Opt. Sem. Techn. 58, 21–45 (2023) (in Ukrainian)

    Google Scholar 

  8. Y. Zhang, T.R. Nayak, H. Hong, W. Cai, Curr. Mol. Med. 13(10), 1633–1645 (2013). https://doi.org/10.2174/1566524013666131111130058]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. A. Ortiz-Casas, J. Galdámez-Martínez, A.B. Gutiérrez-Flores, P.K. Ibañez, G. Panda, H.A. de la Santana, M. Vega, C.G. Suar, A. Rodelo, Y.K. Kaushik, A.D. Mishra, Mater. Today (2021). https://doi.org/10.1016/j.mattod.2021.07.025

    Article  Google Scholar 

  10. S. Anjum, M. Hashim, S.A. Malik, M. Khan, J.M. Lorenzo, B.H. Abbasi, Ch. Hano, Cancers (MDPI) (2021). https://doi.org/10.3390/cancers13184570

    Article  Google Scholar 

  11. L. Fedorenko, V. Litovchenko, V. Naumov, D. Korbutyak, V. Yukhymchuk, O. Gudymenko, O. Dubikovskyi, H. Mimura, A. Medvids, Coatings (2022). https://doi.org/10.3390/coatings12111705

    Article  Google Scholar 

  12. H. Cao, R. Chriki, S. Bittner, A. Friesem, N. Davidson, Nat. Rev. Phys. (2019). https://doi.org/10.1038/s42254-018-0010-6

    Article  Google Scholar 

  13. D. Bera, L. Qian, S. Sabui, S. Santra, P.H. Holloway, Opt. Mater. 30, 1233–1239 (2008)

    Article  CAS  Google Scholar 

  14. O. Oberemok, V. Kladko, O. Dubikovskyi, O. Kosulya, O. Gudymenko, B. Romanyuk, Z. Maksimenko, T. Sabov, O. Kolomys, Mater. Chem. Phys. (2023). https://doi.org/10.1016/j.matchemphys.2023.127669

    Article  Google Scholar 

  15. A. Galdámez-Martinez, G. Santana, F. Güell, P.R. Martínez-Alanis, A. Dutt, Nanomaterials (Basel) (2020). https://doi.org/10.3390/nano10050857

    Article  PubMed  Google Scholar 

  16. C.-C. Wang, A.-Y. Lo, M.-C. Cheng, Y.-S. Chang, H.-C. Shih, F.-S. Shieu, H.-T. Tsai, Sci. Rep. 13, 9704 (2023)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. P. Rauwel, M. Salumaa, A. Aasna, A. Galeckas, E. Rauwel, J. Nanomater. (2016). https://doi.org/10.1155/2016/5320625

    Article  Google Scholar 

  18. P. Thiyagarajan, M. Kottaisamy, N. Ramaa, M.S. Ramachandra Rao, Scr. Mater. 59, 722 (2008)

    Article  CAS  Google Scholar 

  19. K.H. Tam et al., J. Phys. Chem. B 110, 20865 (2006)

    Article  CAS  PubMed  Google Scholar 

  20. S. Vempati, J. Mitra, P. Dawson, Nanoscale Res. Lett.. Lett. 7, 470 (2012)

    Article  Google Scholar 

  21. I. Parkhomenko, L. Vlasukova, F. Komarov, M. Makhavikou, O. Milchanin, E. Wendler, M. Zapf, C. Ronning, J. Phys. D Appl. Phys. (2021). https://doi.org/10.1088/1361-6463/abf0ec

    Article  Google Scholar 

  22. E.V. Kirichenko, V.A. Stephanovich, Sci. Rep. (2021). https://doi.org/10.1038/s41598-021-91414-w

    Article  PubMed  PubMed Central  Google Scholar 

  23. B. Cao, W. Cai, H. Zeng, Appl. Phys. Lett. (2006). https://doi.org/10.1063/1.2195694

    Article  Google Scholar 

Download references

Acknowledgements

Not applicable

Funding

No funding was received for conducting this study. The authors have no financial or proprietary interests in any material discussed in this article.

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written through the contributions of all co-authors. All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by all authors. The first draft of the manuscript was written by D.V. Korbutyak and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to O. V. Pylypova.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflicts of interest.

Ethics approval

The authors declare that the work is written with due consideration of ethical standards.

Consent to participate

All authors of the article agree to participate in the publication.

Consent for publication

All authors of the article agree to participate in the publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korbutyak, D.V., Lytvyn, O.S., Fedorenko, L.L. et al. Photoluminescence spectra of nanocrystalline ZnO films obtained by magnetron deposition technique. J Mater Sci: Mater Electron 35, 583 (2024). https://doi.org/10.1007/s10854-024-12349-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12349-2

Navigation