Skip to main content
Log in

Modulating emission color in Mn-doped ZnS/ZnO microbelts via thermal evaporation process

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Typically, the photoluminescence spectra of ZnS nanostructures exhibit a blue emission band and this material is commonly doped with Cu2+ ions to produce a green band and with Mn2+ ions to yield a yellow-orange band for LEDs applications. In this paper, we exclusively focus on Mn-doped ZnS/ZnO microbelts fabricated by a thermal evaporation method. The presence of the ZnO phase in the microbelts without active oxidation of the samples after synthesis influenced the optical properties of the microbelts. Photoluminescence of the prepared microbelts can be turned from a green to an orange band by changing the ratio between MnCl2 and ZnS powder. Especially, at a precursor ratio of 0.5:1, the neutral white light encompasses blue, green, and orange bands that appear simultaneously. When the content of MnCl2 equals that of ZnS powder, a high-value color purity (93.88%) can be achieved for the orange emission. The energy transfer mechanism between the ZnS host lattice, ZnO phase and the Mn2+ dopant will also be discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The data and materials for this work are available from the corresponding author.

References

  1. R. Chauhan, A. Kumar, R.P. Chaudhary, Spectrochim. Acta A 113, 250–256 (2013). https://doi.org/10.1016/j.saa.2013.04.087

    Article  CAS  Google Scholar 

  2. D.V. Dake, N.D. Raskar, V.A. Mane, R.B. Sonpir, E. Stathatos, K. Asokan, P.D. Babu, B.N. Dole, Appl. Phys. A 126, 1–15 (2020). https://doi.org/10.1007/s00339-020-03669-1

    Article  CAS  Google Scholar 

  3. G.J. Lee, J.J. Wu, Powder Technol. 318, 8–22 (2017). https://doi.org/10.1016/j.powtec.2017.05.022

    Article  CAS  Google Scholar 

  4. R. Boulkroune, M. Sebais, Y. Messai, R. Bourzami, M. Schmutz, C. Blanck, O. Halimi, B. Boudine, Bull. Mater. Sci. 42, 1–8 (2019). https://doi.org/10.1007/s12034-019-1905-2

    Article  CAS  Google Scholar 

  5. G. Palanisamy, K. Bhuvaneswari, T. Pazhanivel, R. Shankar, K.M. Katubi, N.S. Alsaiari, M. Ouladsmane, Mater. Res. Bull. 142, 111387 (2021). https://doi.org/10.1016/j.materresbull.2021.111387

    Article  CAS  Google Scholar 

  6. J. Borah, K. Sarma, Acta Phys. Pol. A 114(4), 713–719 (2008). https://doi.org/10.12693/APhysPolA.114.713

    Article  CAS  Google Scholar 

  7. K. Vijai Anand, J. Clust. Sci. 32(1), 155–161 (2021). https://doi.org/10.1007/s10876-020-01772-0

    Article  CAS  Google Scholar 

  8. K. Qiu, Q. Xie, L. Meng, L. Cai, W. Lin, Z. Yao, B. Ai, Z. Liang, H. Shen, Sol. Energy 225, 961–968 (2021). https://doi.org/10.1016/j.solener.2021.08.012

    Article  CAS  Google Scholar 

  9. S. Hasani, M. Arvand, M.F. Habibi, Microchem. J. 185, 108253 (2023). https://doi.org/10.1016/j.microc.2022.108253

    Article  CAS  Google Scholar 

  10. H. Van Bui, D. Van Thai, T. Dai Nguyen, H.T. Tran, N.D. Nui, N.M. Hung, Mater. Chem. Phys. 307, 128081 (2023). https://doi.org/10.1016/j.matchemphys.2023.128081

    Article  CAS  Google Scholar 

  11. S. Chaguetmi, L. Chaperman, S. Nowak, D. Schaming, S. Lau-Truong, P. Decorse, P. Beaunier, C. Costentin, F. Mammeri, S. Achour, S. Ammar, J. Photochem. Photobiol. A 356, 489–501 (2018). https://doi.org/10.1016/j.jphotochem.2018.01.038

    Article  CAS  Google Scholar 

  12. M.S. Elnouby, O. El-Shazly, E.F. El-Wahidy, M. Ramadan, A.A.M. Farag, N. Roushdy, Optik 287, 171070 (2023). https://doi.org/10.1016/j.ijleo.2023.171070

    Article  CAS  Google Scholar 

  13. R. Gao, X. Zhang, Y. Wu, S. Gao, L. Liu, Y. Xu, X. Cheng, M. Zheng, X. Zhou, L. Huo, Sens. Actuators B 380, 133304 (2023). https://doi.org/10.1016/j.snb.2023.133304

    Article  CAS  Google Scholar 

  14. G. Long, Y. Guo, W. Li, Q. Tang, X. Zu, J. Ma, B. Du, Y. Fu, Microelectron. Eng. 222, 111201 (2020). https://doi.org/10.1016/j.mee.2019.111201

    Article  CAS  Google Scholar 

  15. D. Kanakaraju, A. Chandrasekaran, Sci. Total. Environ. 868, 161525 (2023). https://doi.org/10.1016/j.scitotenv.2023.161525

    Article  CAS  PubMed  Google Scholar 

  16. S. Murugan, M. Ashokkumar, P. Sakthivel, D. Choi, Heliyon 9(7), 17947 (2023). https://doi.org/10.1016/j.heliyon.2023.e17947

    Article  CAS  Google Scholar 

  17. H. Naeem, H.M. Tofil, M. Soliman, A. Hai, S.H.H. Zaidi, N. Kizilbash, D. Alruwaili, M. Ajmal, M. Siddiq, Molecules 28(3), 926 (2023). https://doi.org/10.3390/molecules28030926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. W.T. Mohammad, H. Alijani, P. Faris, E. Salarkia, M. Naderifar, M.R. Akbarizadeh, N. Hashemi, S. Iravani, A.T. Jalil, M.M. Saleh, A. Fathi, M. Khatami, S. Afr. J. Bot. 155, 127–139 (2023). https://doi.org/10.1016/j.sajb.2023.01.041

    Article  CAS  Google Scholar 

  19. Y. Jiang, Q. Li, Y. Xu, W. Bai, X. Yang, S. Li, Y. Li, Biosens. Bioelectron. 201, 113980 (2022). https://doi.org/10.1016/j.bios.2022.113980

    Article  CAS  PubMed  Google Scholar 

  20. M.H. Chua, K.L.O. Chin, X.J. Loh, Q. Zhu, J. Xu, ACS Nano 17(3), 1845–1878 (2023). https://doi.org/10.1021/acsnano.2c10826

    Article  CAS  PubMed  Google Scholar 

  21. X. Fang, Y. Bando, M. Liao, U.K. Gautam, C. Zhi, B. Dierre, L. Baodan, Z. Tianyou, S. Takashi, K. Yasuo, D. Golberg, Adv. Mater. 21(20), 2034–2039 (2009). https://doi.org/10.1002/adma.200802441

    Article  CAS  Google Scholar 

  22. S.S. Chen, X.X. Chen, T.Y. Yang, L. Chen, Z. Guo, X.J. Huang, J. Hazard. Mater. 463, 132940 (2024). https://doi.org/10.1016/j.jhazmat.2023.132940

    Article  CAS  PubMed  Google Scholar 

  23. M.A. Albo Hay Allah, H.A. Alshamsi, J. Mater. Sci. 34(16), 1263 (2023). https://doi.org/10.1007/s10854-023-10636-y

    Article  CAS  Google Scholar 

  24. M.A.A.H. Allah, H.A. Alshamsi, Inorg. Chem. Commun. 157, 111415 (2023). https://doi.org/10.1016/j.inoche.2023.111415

    Article  CAS  Google Scholar 

  25. S. Hamzeh, H. Mahmoudi-Moghaddam, S. Zinatloo-Ajabshir, M. Amiri, S.A.R. Nasab, Food Chem. 433, 137363 (2024). https://doi.org/10.1016/j.foodchem.2023.137363

    Article  CAS  PubMed  Google Scholar 

  26. S.A. Thomas, N. Roy, W.S. Saeed, A. Sreedhar, J. Cherusseri, Int. J. Hydrogen Energy (2023). https://doi.org/10.1016/j.ijhydene.2023.06.302

    Article  Google Scholar 

  27. E.I. Anila, T.A. Safeera, R.J.J.O.F. Reshmi, J. Fluoresc. 25, 227–230 (2015). https://doi.org/10.1007/s10895-015-1515-3

    Article  CAS  PubMed  Google Scholar 

  28. F. Chen, Y. Cao, D. Jia, Chem. Eng. J. 234, 223–231 (2013). https://doi.org/10.1016/j.cej.2013.08.075

    Article  CAS  Google Scholar 

  29. M.T. Tran, N.V. Du, N. Tu, N.T. Huyen, N.D. Hung, D.X. Viet, N.N. Ha, D.Q. Trung, P.T. Huy, Opt. Mater. 124, 111963 (2022). https://doi.org/10.1016/j.optmat.2021.111963

    Article  CAS  Google Scholar 

  30. D. Yuvaraj, M. Sathyanarayanan, K.N. Rao, J. Nanosci. Nanotechnol. 14(6), 4500–4505 (2014). https://doi.org/10.1166/jnn.2014.8078

    Article  CAS  PubMed  Google Scholar 

  31. D. Shakthivel, W.T. Navaraj, S. Champet, D.H. Gregory, R.S. Dahiya, Nanoscale Adv. 1(9), 3568–3578 (2019). https://doi.org/10.1039/C9NA00134D

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. M.A. Kamran, R. Liu, L. Jing, L.J. Shi, B. Zou, Nanosci. Nanotechnol. Lett. 6(8), 706–710 (2014). https://doi.org/10.1166/nnl.2014.1826

    Article  CAS  Google Scholar 

  33. A. JesuJebathew, M. Karunakaran, R. Ade, J.S. Ponraj, V. Ganesh, R.K. Manavalan, Y. Bitla, Y.S. Yahia, H. Algarni, J. Mater. Sci. 33, 2192–2203 (2022). https://doi.org/10.1007/s10854-021-07426-9

    Article  CAS  Google Scholar 

  34. W. Ghazal, S. Mamoun, M.B. Kanoun, S. Goumri-Said, A.E. Merad, Opt. Quant. Electron. 55(4), 310 (2023). https://doi.org/10.1007/s11082-023-04602-5

    Article  CAS  Google Scholar 

  35. A. Pramanick, S. Ghosh, A. Ikbal, A. Halder, T.P. Majumder, D. Bhadra, Indian J. Phys. 98(1), 109–116 (2023). https://doi.org/10.1007/s12648-023-02784-y

    Article  CAS  Google Scholar 

  36. M.S. Khan, B. Zou, S. Yao, Z. ul Haq, A.S. Abdulla, W. Huang, B. Zheng, J. Magn. Magn. Mater. 582, 171013 (2023). https://doi.org/10.1016/j.jmmm.2023.171013

    Article  CAS  Google Scholar 

  37. S. Sapra, A. Prakash, A. Ghangrekar, N. Periasamy, D.D. Sarma, J. Phys. Chem. B 109(5), 1663–1668 (2005). https://doi.org/10.1021/jp049976e

    Article  CAS  PubMed  Google Scholar 

  38. Y. Wu, J. Li, X. Zhao, X. Gong, Carbon 201, 796–804 (2023). https://doi.org/10.1016/j.carbon.2022.09.060

    Article  CAS  Google Scholar 

  39. D. Lin, P. Zhong, G. He, IEEE Photon. Technol. Lett. 29(12), 1050–1053 (2017). https://doi.org/10.1109/LPT.2017.2702709

    Article  CAS  Google Scholar 

  40. Q.T. Do, M.T. Tran, N.D. Hung, Q.N. Van, N.T. Huyen, N. Tu, H.P. Thanh, Opt. Mater. 121, 111587 (2021). https://doi.org/10.1016/j.optmat.2021.111587

    Article  CAS  Google Scholar 

  41. M.W. Maswanganye, G.L. Kabongo, M.S. Dhlamini, Nanomaterials 13(1), 77 (2022). https://doi.org/10.3390/nano13010077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. A. Jafari-Rad, H. Kafashan, Ceram. Int. 45(17), 21413–21422 (2019). https://doi.org/10.1016/j.ceramint.2019.07.130

    Article  CAS  Google Scholar 

  43. M.A. Avilés, J.M. Córdoba, M.J. Sayagués, F.J. Gotor, J. Mater. Sci. 55, 1603–1613 (2020). https://doi.org/10.1007/s10853-019-04138-8

    Article  CAS  Google Scholar 

  44. Q. Xiong, J. Wang, O. Reese, L.C. Lew Yan Voon, P.C. Eklund, Nano Lett. 4(10), 1991–1996 (2004). https://doi.org/10.1021/nl048720h

    Article  CAS  Google Scholar 

  45. S. Jeong, M. Choe, J.W. Kang, M.W. Kim, W.G. Jung, Y.C. Leem, J. Chun, B.J. Kim, S.J. Park, ACS Appl. Mater. Interfaces 6(9), 6170–6176 (2014). https://doi.org/10.1021/am500731n

    Article  CAS  PubMed  Google Scholar 

  46. N. Kamarulzaman, M.F. Kasim, N.F. Chayed, Results Phys. 6, 217–230 (2016). https://doi.org/10.1016/j.rinp.2016.04.001

    Article  Google Scholar 

  47. L. Dai, C. Strelow, T. Kipp, A. Mews, I. Benkenstein, D. Eifler, V.T. Huyen, R. Jabor, M.G. James, L. Rostyslav, C. Klinke, Chem. Mater. 33(1), 275–284 (2020). https://doi.org/10.1021/acs.chemmater.0c03755

    Article  CAS  Google Scholar 

  48. Z.H. Ibupoto, K. Khun, X. Liu, M. Willander, Nanomaterials 3(3), 564–571 (2013). https://doi.org/10.3390/nano3030564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. F. Achouri, S. Corbel, L. Balan, K. Mozet, E. Girot, G. Medjahdi, B.S. Myriam, G. Ahmed, R. Schneider, Mater. Des. 101, 309–316 (2016). https://doi.org/10.1016/j.matdes.2016.04.015

    Article  CAS  Google Scholar 

  50. A. Dhara, S. Sain, S. Das, S.K. Pradhan, Mater. Res. Bull. 97, 169–175 (2018). https://doi.org/10.1016/j.materresbull.2017.08.060

    Article  CAS  Google Scholar 

  51. V.G. Krishna, S.R. Maidur, P.S. Patil, M.G. Mahesha, Chem. Phys. Lett. 750, 137457 (2020). https://doi.org/10.1016/j.cplett.2020.137457

    Article  CAS  Google Scholar 

  52. J. Liu, Z. Guo, Y. Jia, F. Meng, T. Luo, J. Liu, J. Cryst. Growth 311(5), 1423–1429 (2009). https://doi.org/10.1016/j.jcrysgro.2008.12.055

    Article  CAS  Google Scholar 

  53. M. Zaborowska, T. Tański, W. Matysiak, P. Skóra, Mater. Res. Bull. 168, 112461 (2023). https://doi.org/10.1016/j.materresbull.2023.112461

    Article  CAS  Google Scholar 

  54. X. Zhou, Q. Yang, H. Wang, F. Huang, J. Zhang, S. Xu, J. Mater. Sci. Mater. Electron. 30, 1089–1099 (2019). https://doi.org/10.1007/s10854-018-0378-1

    Article  CAS  Google Scholar 

  55. Y. Cheng, R. Chen, H. Feng, W. Hao, H. Xu, Y. Wang, J. Li, Phys. Chem. Chem. Phys. 16(10), 4544–4550 (2014). https://doi.org/10.1039/c3cp54830a

    Article  CAS  PubMed  Google Scholar 

  56. T.P. Nguyen, Q.V. Lam, T.B. Vu, Solid State Sci. 101, 106123 (2020). https://doi.org/10.1016/j.solidstatesciences.2020.106123

    Article  CAS  Google Scholar 

  57. X. Gao, N. Zhuo, C. Liao, L. Xiao, H. Wang, Y. Cui, J. Zhang, Opt. Mater. Express 5(10), 2164–2173 (2015). https://doi.org/10.1364/OME.5.002164

    Article  CAS  Google Scholar 

  58. T.P. Nguyen, T.B. Vu, Q.V. Lam, Opt. Mater. 110, 110537 (2020). https://doi.org/10.1016/j.optmat.2020.110537

    Article  CAS  Google Scholar 

  59. T. Zhang, F. Li, G. Huang, Y. Zhang, F. Zhao, Y. Huang, Opt. Mater. 147, 114732 (2024). https://doi.org/10.1016/j.optmat.2023.114732

    Article  CAS  Google Scholar 

Download references

Funding

There is no funding for this work.

Author information

Authors and Affiliations

Authors

Contributions

Nghia Van Nguyen: Methodology, Formal analysis, Investigation, Writing—original draft. Hung Duy Nguyen: Conceptualization, Supervision, Writing—review and editing, Project administration. Do Van Phan: Methodology, Writing—review and editing. Thien Duc Trinh: Data curation, Investigation, Writing—review and editing. Bich Danh Do: Investigation, Writing—review and editing. Huong Thanh Nguyen: Methodology, Investigation, Writing—review and editing. Minh Quoc Le: Supervision, Investigation, Writing—review and editing. All of the authors reviewed the manuscript.

Corresponding author

Correspondence to Nghia Van Nguyen.

Ethics declarations

Competing interests

The authors declare that no potential conflict of interest was reported. Nghia Van Nguyen and Hung Duy Nguyen are equal co-first authorship.

Ethical approval

All of the authors declare that all ethics rules were followed accordingly.

Consent for publication

All of the authors agree to be published.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Van Nguyen, N., Nguyen, H.D., Van Phan, D. et al. Modulating emission color in Mn-doped ZnS/ZnO microbelts via thermal evaporation process. J Mater Sci: Mater Electron 35, 620 (2024). https://doi.org/10.1007/s10854-024-12347-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12347-4

Navigation