Skip to main content

Advertisement

Log in

Study on high temperature reliability of electrical interconnection material of SiC pressure sensor

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this paper, the effects of the composition and sintering process of the conductive silver paste on the packaging and electrical interconnection performance of the silicon carbide high temperature pressure sensor are studied in detail. At the same time, a self-built high temperature reliability test platform is used to test the electrical interconnection reliability of the conductive silver paste under high temperature environments. The results show that flake silver powder can not only effectively promote the density of the conductive silver paste, but also improve the grain boundary migration behavior of the conductive silver paste, thereby improving the electromigration resistance of the sintered silver. The prepared conductive silver paste has good compatibility with high temperature pressure sensor materials such as SiC, AlN, and Pt, and the adhesion strength reach 23.12 MPa, 26.35 MPa, and 19.22 MPa, respectively. When the silver paste does not contain flake silver, the sheet resistance of the sintered silver paste is the lowest at 650 °C, which is only 2.58 mΩ/□, and there is still room for improvement. The high temperature stability test shows acceptable performance, but in the high current test with a current density of 125 A/mm2, the failure time is only 105 min. After adding 20 wt% of flake silver powder, the sheet resistance of the silver paste can be further reduced to 1.50 mΩ/□ by 41.9%, and the failure time can be extended to 158 min, with a 50.5% increase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data availability

The data supporting this study are available from the corresponding author upon reasonable request.

References

  1. H. Wentao, L. Yanhua, Z. Jiangbo et al., J. Telemetry Track. Command. 37, 61 (2016)

    Google Scholar 

  2. X. Fang, C. Wu, Y. Zhao, Z. Jiang, Y. Lv, J. Micromech. Microeng. 30 (2020)

  3. H. Soy, I. Toy, Measurement 176, 109184 (2021)

    Article  Google Scholar 

  4. N.G. Wright, A.B. Horsfall, J. Phys. D Appl. Phys. 40, 6345–6354 (2007)

    Article  CAS  Google Scholar 

  5. J.H. Han, K.B. Kim, J.H. Kim, N.K. Min, Sens. Actuators Phys. 321, 112410 (2020)

    Article  Google Scholar 

  6. C. Lei, Q. Li, T. Liang et al., J. Cryst. Growth. 592, 126735 (2022)

    Article  CAS  Google Scholar 

  7. T. Pang, Z. Yan, F. Tang, X. Wang, Noise Vib. Control. 31, 170–174 (2011)

    Google Scholar 

  8. W. Ke, Y. Xing, X. Hui, W. Yuehui, Electro Nic Compon. Mater. 37, 34–38 (2018)

    Google Scholar 

  9. L. Xincheng, S. Haicheng, Q. Guanjun et al., Mater. Rep. 35, 8076–8080 (2021)

    Google Scholar 

  10. Y. Chao-qing, Y. Shuang, R. Xiao-mei et al., Electr. Eng. Mater. 5, 18–22 (2015)

    Google Scholar 

  11. T.B. Heng, A. Khanna, T. Mueller, V. Shanmugam, W.C. Chang, Sol. Energy. 189, 179–185 (2019)

    Article  Google Scholar 

  12. J.-B. Zhang, Z.-S. Fan, D.-B. Sun, H.-Y. Yu, H.-M. Meng, H.-Q. Li, Electron. Compon. Mater. (China). 23, 28–30 (2004)

    Google Scholar 

  13. S. Liu, X. Zhu, J. Long. Mater. Sci. Semicond. Process. 139, 106352 (2022)

    Article  CAS  Google Scholar 

  14. X. Qisi, L. Wenlin, L. Yun, Electr. Eng. Mater. 5, 8–11 (2021)

    Google Scholar 

  15. Z. Zongtuan, Z. Wenjing, H. Xuan et al., J. Xi’an Polytechnic Univ. 33, 538–548 (2019)

    Google Scholar 

  16. L. Mo, Y. Zhang, L. Zhao, C. Zhou, W. Wang, J. Alloys Compd. 742, 256–262 (2018)

    Article  CAS  Google Scholar 

  17. W. Yang, Q. Sun, Q. Lei et al J. Mater. Process. Technol. 267, 61–67 (2018)

    Article  Google Scholar 

  18. S. Guoji, S. Qin, Y. Wanchun, X. Hongbo, L. Mingyu, Trans. China Weld. Institution. 42, 9 (2021)

    Google Scholar 

  19. Y.Q. Zou, R.L. Fu, X.H. Liu, H.B. Liu, H. Wang, Ceram. Int. 47, 9471–9476 (2021)

    Article  CAS  Google Scholar 

  20. C.M. Chen, S.W. Chen, Acta Mater. 50, 2461–2469 (2002)

    Article  CAS  Google Scholar 

  21. Y. Li, J. Huang, N. Yang, D. Fan, X. Yu, H. Zhuang, Mater. Today Commun. 34, 105327 (2023)

    Article  CAS  Google Scholar 

  22. T. Kadoguchi, K. Gotou, K. Yamanaka, S. Nagao, K. Suganuma, Microelectron. Reliab. 55, 2554–2559 (2015)

    Article  CAS  Google Scholar 

  23. L. Liu, Z. Wei, H. Zhang, B. Li, W. Ping, Microelectron. Reliab. 50, 251–257 (2010)

    Article  CAS  Google Scholar 

  24. Z. Jin et al., J. Mater. Sci. 56(16), 9769–9779 (2021)

    Article  CAS  Google Scholar 

  25. Z. Jin et al., J. Appl. Phys. 126(18), 185109 (2019)

    Article  Google Scholar 

  26. Y.C. Hsu, T.L. Shao, C.J. Yang, C. Chen, J. Electron. Mater. 32, 1222–1227 (2003)

    Article  CAS  Google Scholar 

  27. J. Tang et al., J. Alloys Compd. 983, 173769 (2024)

    Article  CAS  Google Scholar 

  28. T. Fan et al., J. Alloys Compd. 731, 1280–1287 (2018)

    Article  CAS  Google Scholar 

Download references

Funding

This study is supported by the Fundamental Research Funds for the Central Universities, NS2021043.

Author information

Authors and Affiliations

Authors

Contributions

Writing—original draft: TX, XZ. Writing—review and editing: TX, ZH, XZ, MM, RF. Validation: TX, XZ. Data curation: TX, XZ. Resources: ZH, TC, RF. Supervision: TX, ZH, RF. Project administration: TX, RF.

Corresponding author

Correspondence to Zeya Huang.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, T., Huang, Z., Zhang, X. et al. Study on high temperature reliability of electrical interconnection material of SiC pressure sensor. J Mater Sci: Mater Electron 35, 700 (2024). https://doi.org/10.1007/s10854-024-12308-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12308-x

Navigation