Skip to main content
Log in

Synthesis, photophysical and chiroptical properties of 9–cyano[7]helicene for OLED applications. A combined experimental and theoretical investigation

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The synthesis of 9–cyano[7]helicene achieved a 62% overall yield with high purity, following a two-step procedure. Characterization was carried out using 1H, 13C, and COSY NMR spectroscopy, as well as FT–IR analysis. The racemic mixture of helicene was effectively separated into P– and M–enantiomers with exceptional optical purity (> 99% ee). This separation allowed us to showcase substantial optical rotations (+ 4800 for the P–enantiomer at λ = 589 nm) and notable electronic circular dichroism (ECD) signals. The organic material exhibited a robust UV absorption band and emitted a vibrant blue light, resulting in a fluorescence quantum yield of 11%. Experimentally determined electronic energy levels revealed HOMO energy of − 5.86 eV and LUMO energy of − 3.25 eV, yielding an electrochemical band gap of 2.61 eV. Furthermore, an in-depth analysis of absorption and ECD spectra, along with molecular electrostatic potential (MEP) and reduced density gradient (RDG) calculations using quantum chemistry, highlighted the material’s fundamental characteristics. These findings collectively suggest that this compound holds promise as a potential candidate for use in electroluminescent devices and OLED technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Data included in article/supplementary material/referenced in article.

References

  1. R.H. Martin, The helicenes. Angew. Chem. Int. Ed. Engl. 13, 649–660 (1974)

    Article  Google Scholar 

  2. Y. Shen, C.F. Chen, Helicenes: synthesis and applications. Chem. Rev. 112, 1463–1535 (2012)

    Article  CAS  PubMed  Google Scholar 

  3. M. Gingras, One hundred years of helicene chemistry. Part 1: non-stereoselective syntheses of carbohelicenes. Chem. Soc. Rev. 42, 968–1006 (2013)

    Article  CAS  PubMed  Google Scholar 

  4. M. Gingras, G. Felix, R. Peresutti, One hundred years of helicene chemistry. Part 2: stereoselective syntheses and chiral separations of carbohelicenes. Chem. Soc. Rev. 42, 1007–1050 (2013)

    Article  CAS  PubMed  Google Scholar 

  5. D.B. Amabilino, in Chirality at the nanoscale, nanoparticles, surfaces, materials and more. (Wiley-VCH, Hoboken, 2009), pp.1–418

    Chapter  Google Scholar 

  6. N. Harada, K. Nakanishi, N. Berova, Electronic CD exciton chirality method: principles and applications. Compr. Chiroptical Spectrosc. 2, 115–166 (2012)

    Article  CAS  Google Scholar 

  7. M. Cei, L. Di Bari, F. Zinna, Circularly polarized luminescence of helicenes: a data–informed insight. Chirality. 35, 192–210 (2023)

    Article  CAS  PubMed  Google Scholar 

  8. Y. Liu, Q. Xu, J. Sun, L. Wang, D. He, M. Wang, C. Yang, Insights for vibronic effects on spectral shapes of electronic circular dichroism and circularly polarized luminescence of aza– 7]helicene. Spectrochim. Acta Part. A 239, 118475 (2020)

    Article  CAS  Google Scholar 

  9. T. Mori, Chiroptical properties of symmetric double, triple. And multiple helicenes. Chem. Rev. 121, 2373–2412 (2021)

    Article  CAS  PubMed  Google Scholar 

  10. M. Gingras, One hundred years of helicene chemistry. Part 3: applications and properties ofcarbohelicenes. Chem. Soc. Rev. 42(1051), 1051–1095 (2013)

    Article  CAS  PubMed  Google Scholar 

  11. K. Dhbaibi, L. Favereau, J. Crassous, Enantioenriched helicenes and helicenoids containing main-group elements (B, Si, N, P). Chem. Rev. 119, 8846–8953 (2019)

    Article  CAS  PubMed  Google Scholar 

  12. G.M. Upadhyay, A.V. Bedekar, Synthesis and photophysical properties of bi-aza[5] helicene and bi-aza[6]helicene. Tetrahedron. 71, 5644–5649 (2015)

    Article  CAS  Google Scholar 

  13. G.M. Upadhyay, H.R. Talele, A.V. Bedekar, Synthesis and photophysical properties of aza[n]helicenes. J. Org. Chem. 81, 7751–7759 (2016)

    Article  CAS  PubMed  Google Scholar 

  14. M. Li, H.-Y. Lu, C.-F. Chen, [5]Helicene derivatives containing aromatic imide moiety: synthesis, structure, and photophysical properties. J. Photochem. Photobiol. A 355, 408–413 (2018)

    Article  CAS  Google Scholar 

  15. K. Yamamoto, T. Shimizu, K. Igawa, K. Tomooka, G. Hirai, H. Suemune, K. Usui, Rational design and synthesis of [5]helicene-derived phosphine ligands and their application in Pd-catalyzed asymmetric reactions. Sci. Rep. 6, 36211 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  16. D. Sakamoto, I.G. Sánchez, J. Rybáček, J. Vacek, L. Bednárová, M. Pazderková, R. Pohl, I. Císařová, I.G. Stará, I. Starý, Cycloiridated helicenes as chiral catalysts in the asymmetric transfer hydrogenation of imines. ACS Catal. 12(17), 10793–10800 (2022)

    Article  CAS  Google Scholar 

  17. C.-T. Chen, C.-C. Tsai, P.-K. Tsou, G.-T. Huang, C.-H. Yu, Enantiodivergent Steglich rearrangement of O-carboxylazlactones catalyzed by a chirality switchable helicene containing a 4-aminopyridine unit. Chem. Sci. 8, 524–529 (2017)

    Article  CAS  PubMed  Google Scholar 

  18. E. Anger, M. Srebro, N. Vanthuyne, L. Toupet, S. Rigaut, C. Roussel, J. Autschbach, J. Crassous, R. Réau, Ruthenium-vinylhelicenes: remote metal-based enhancement and redox switching of the chiroptical properties of a helicene core. J. Am. Chem. Soc. 134(38), 15628–15631 (2012)

    Article  CAS  PubMed  Google Scholar 

  19. H. Isla, J. Crassous, Helicene–based chiroptical switches. C R Chim. 19, 39–49 (2015)

    Article  Google Scholar 

  20. M. Shigeno, Y. Kushida, M. Yamaguchi, Molecular switching involving metastable states: molecular thermal hysteresis and sensing of environmental changes by chiral helicene oligomeric foldamers. Chem. Commun. 52, 4955–4970 (2016)

    Article  CAS  Google Scholar 

  21. M. Kos, R. Rodríguez, J. Storch, J. Sýkora, E. Caytan, M. Cordier, I. Císařová, N. Vanthuyne, J.A.G. Williams, J. Žádný, V. Církva, J. Crassous, Enantioenriched ruthenium-tris-bipyridine complexes bearing one helical bipyridine ligand: Access to fused multihelicenic systems and chiroptical redox switches. Inorg. Chem. 60(16), 11838–11851 (2021)

    Article  CAS  PubMed  Google Scholar 

  22. S. Oda, B. Kawakami, Y. Yamasaki, R. Matsumoto, M. Yoshioka, D. Fukushima, S. Nakatsuka, T. Hatakeyama, One-shot synthesis of expanded heterohelicene exhibiting narrowband thermally activated delayed fluorescence. J. Am. Chem. Soc. 144, 1 (2022)

    Google Scholar 

  23. J.R. Brandt, X. Wang, Y. Yang, A.J. Campbell, M.J. Fuchter, Circularly polarized phosphorescent electroluminescence with a high dissymmetry factor from PHOLEDs based on a platinahelicene. J. Am. Chem. Soc. 138(31), 9743–9746 (2016)

    Article  CAS  PubMed  Google Scholar 

  24. W. Hua, Z. Liu, L. Duan, G. Dong, Y. Qiu, B. Zhang, D. Cui, X. Tao, N. Cheng, Y. Liu, Deep-blue electroluminescence from nondoped and doped organic light-emitting diodes (OLEDs) based on a new monoaza[6]helicene. RSC Adv. 5, 75–84 (2015)

    Article  CAS  Google Scholar 

  25. T. Chen, B. Zhang, Z. Liu, L. Duan, G. Dong, Y. Feng, X. Luo, D. Cui, Synthesis and properties of a thiophene-substituted diaza[7]helicene for application as a blue emitter in organic light-emitting diodes. Tetrahedron Lett. 58, 531–535 (2017)

    Article  CAS  Google Scholar 

  26. U.S. Raikar, V.B. Tangod, S.R. Mannopantar, B.M. Mastiholi, Ground and excited state dipole moments of coumarin 337 laser dye. Opt. Commun. 283, 4289–4292 (2010)

    Article  CAS  Google Scholar 

  27. J.R. Mannekutla, B.G. Mulimani, S.R. Inamdar, Solvent effect on absorption and fluorescence spectra of coumarin laser dyes: evaluation of ground and excited state dipole moments. Spectrochim. Acta Part. A 69, 419–426 (2008)

    Article  CAS  Google Scholar 

  28. J.-D. Chen, H.-Y. Lu, C.-F. Chen, Synthesis and structures of multifunctionalized helicenes and dehydrohelicenes: an efficient route to construct cyan fluorescent molecules. Chem. Eur. J. 16, 11843–11846 (2010)

    Article  CAS  PubMed  Google Scholar 

  29. X.-Y. Wang, X.-C. Wang, A. Narita, M. Wagner, X.-Y. Cao, X. Feng, K. Muellen, Synthesis, structure, and chiroptical properties of a double [7]heterohelicene. J. Am. Chem. Soc. 138, 12783–12786 (2016)

    Article  CAS  PubMed  Google Scholar 

  30. S.K. Collins, A. Grandbois, M.P. Vachon, J. Coté, Preparation of helicenes through olefin metathesis. Angew Chem. Int. Ed. 45, 2923–2926 (2006)

    Article  CAS  Google Scholar 

  31. A. Grandbois, S.K. Collins, Enantioselective synthesis of [7]helicene: dramatic effects of olefin additives and aromatic solvents in asymmetric olefin metathesis. Chem. Eur. J. 14, 9323–9329 (2008)

    Article  CAS  PubMed  Google Scholar 

  32. F.B. Mallory, M.J. Rudolph, S.M. Oh, Photochemistry of stilbenes. 8. Eliminative photocyclization of o-methoxystilbenes. J. Org. Chem. 54(19), 4619–4626 (1989)

    Article  CAS  Google Scholar 

  33. N. Hafedh, F. Aloui, V. Dorcet, H. Barhoumi, Helically chiral functionalized [6]helicene: synthesis, optical resolution, and photophysical properties. C R Chim. 21, 652–658 (2018)

    Article  CAS  Google Scholar 

  34. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, Gaussian 09, Revision D, vol. 01 (Gaussian Inc, Wallingford, 2009)

    Google Scholar 

  35. A. Becke, Density functional exchange-energy approximation with correct 7 asymptotic behavior. Phys. Rev. A 38, 3098–3100 (1968)

    Article  Google Scholar 

  36. R. Krishnan, J.S. Binkley, R. Seeger, J.A. Pople, Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions. J. Chem. Phys. 72, 650–654 (1980)

    Article  CAS  Google Scholar 

  37. M. Ben Braiek, F. Aloui, S. Moussa, B. Ben Hassine, Synthesis and characterization of new helically chiral heptacyclic systems. Tetrahedron Lett. 56, 6580–6584 (2015)

    Article  CAS  Google Scholar 

  38. F. Furche, R. Ahlrichs, C. Wachsmann, E. Weber, A. Sobanski, F. Vögtle, S. Grimme, Circular dichroism of helicenes investigated by time-dependent density functional theory. J. Am. Chem. Soc. 122, 1717–1724 (2000)

    Article  CAS  Google Scholar 

  39. J. Coates, Interpretation of Infrared spectra, a practical approach, in Encyclopedia of analytical chemistry. ed. by R.A. Meyers (Wiley, Hoboken, 2020), pp.1–23

    Google Scholar 

  40. R.H. Martin, M.J. Marchant, Resolution and optical properties ([α]Max, ORD and CD) of hepta-, octa- and nonahelicene. Tetrahedron. 3, 343–345 (1974)

    Article  Google Scholar 

  41. A. Bossi, L. Falciola, C. Graiff, S. Maiorana, C. Rigamonti, A. Tiripicchio, E. Licandro, P.R. Mussini, Electrochemical activity of thiahelicenes: structure effects and electrooligomerization ability. Electrochim. Acta. 54, 5083–5097 (2009)

    Article  CAS  Google Scholar 

  42. H. Kubo, T. Hirose, T. Nakashima, T. Kawai, J.-. Hasegawa, K. Matsuda, Tuning transition electric and magnetic dipole moments: [7]helicenes showing intense circularly polarized luminescence. J. Phys. Chem. Lett. 12, 686–695 (2021)

    Article  CAS  PubMed  Google Scholar 

  43. J.B. Birks, D.J.S. Birch, E. Cordemans, E.V. Donckt, Fluorescence of the higher helicenes. Chem. Phys. Lett. 43, 33–36 (1976)

    Article  CAS  Google Scholar 

  44. E.V. Donckt, J. Nasielski, J.R. Greenleaf, J.B. Birks, Fluorescence of the helicenes. Chem. Phys. Lett. 2, 409–410 (1968)

    Article  Google Scholar 

  45. K. Yavari, W. Delaunay, N. De Rycke, T. Reynaldo, P. Aillard, M. Srebro-Hooper, V.Y. Chang, G. Muller, D. Tondelier, B. Geffroy, A. Voituriez, A. Marinetti, M. Hissle, J. Crassous, Phosphahelicenes: from chiroptical and photophysical properties to OLED applications. Chem. Eur. J. 25, 5303–5310 (2019)

    Article  CAS  PubMed  Google Scholar 

  46. A. Ekbote, S.H. Han, T. Jadhav, S.M. Mobin, J. Yeob Lee, R. Misra, Stimuli re-sponsive AIE active positional isomers of phenanthroimidazole as non-doped emitters in OLEDs. J. Mater. Chem. C 6, 2077–2087 (2018)

    Article  CAS  Google Scholar 

  47. S. Jhulki, A.K. Mishra, A. Ghosh, T.J. Chow, J.N. Moorthy, Deep blue-emissive bifunctional (hole-transporting + emissive) materials with CIEy ~ 0.06 based on a ‘U’-shaped phenanthrene scaffold f or application in organic light-emitting diodes. J. Mater. Chem. C 4, 9310–9315 (2016)

    Article  CAS  Google Scholar 

  48. M. Pecul, K. Ruud, The ab initio calculation of optical rotation and electronic circular dichroism. Adv. Quant. Chem. 50, 185–212 (2005)

    Article  CAS  Google Scholar 

  49. M. Spassova, I. Asselberghs, T. Verbiest, K. Clays, E. Botek, B. Champagne, Theoretical investigation on bridged triarylamine helicenes: UV/visible and circular dichroism spectra. Chem. Phys. Lett. 439, 213–218 (2007)

    Article  CAS  Google Scholar 

  50. Y. Nakai, T. Mori, Y. Inoue, Theoretical and experimental studies on circular dichroism of carbo[n]helicenes. J. Phys. Chem. A 116, 7372–7385 (2012)

    Article  CAS  PubMed  Google Scholar 

  51. J. Pommerehne, H. Vestweber, W. Guss, R.F. Mahrt, H. Bassler, M. Porsch, J. Daub, Efficient two layer leds on a polymer blend basis. Adv. Mater. 7, 551–554 (1995)

    Article  CAS  Google Scholar 

  52. J.L. Bredas, R. Silbey, D.S. Boudreaux, R.R. Chance, Chain-length dependence of electronic and electrochemical properties of conjugated systems: polyacetylene, polyphenylene, polythiophene, and polypyrrole. J. Am. Chem. Soc. 105, 6555–6559 (1983)

    Article  CAS  Google Scholar 

  53. L. Shi, Z. Liu, G. Dong, L. Duan, Y. Qiu, J. Jia, W. Guo, D. Zhao, D. Cui, X. Tao, Synthesis, structure, Properties, and application of a carbazole-based diaza[7]helicene in a deep-blue-emitting OLED. Chem. Eur. J. 18, 8092–8099 (2012)

    Article  CAS  PubMed  Google Scholar 

  54. J.S. Murray, P. Politzer, The electrostatic potential: an overview. WIREs Comp. Mol. Sci. 1, 153–163 (2011)

    Article  CAS  Google Scholar 

  55. B.L. Chittari, S.P. Tewari, Theoretical studies on aminoborane oligomers. Comp. Theor. Chem. 1020, 151–156 (2013)

    Article  Google Scholar 

  56. T. Lu, F. Chen, Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 33, 580–592 (2012)

    Article  PubMed  Google Scholar 

  57. W. Humphrey, A. Dalke, K. Schulten, Visual molecular dynamics. J. Mol. Graph. 14, 33–38 (1996)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the DGRS (Direction Générale de la Recherche Scientifique) of the Tunisian Ministry of Higher Education and Scientific Research for financial support. The authors thank Dr. Nicolas Vanthuyne (Aix-Marseille Université, Service 432-Plateforme de chromatographie chirale ISM2-UMR7313) for HPLC facilities.

Funding

The authors declare no competing financial interest.

Author information

Authors and Affiliations

Authors

Contributions

Ibtissem Hajji: performed the experiments; helped in the manuscript preparation. Mourad Chemek:  performed the theoretical calculations. Abdullah Y. A. Alzahrani: contributed to experimental characterizations and interpreted the data. Béchir Ben Hassine: contributed to the design of the experiments. Faouzi Aloui: conceived and designed the experiments; contributed to drafting; revised and edited the manuscript.

Corresponding author

Correspondence to Faouzi Aloui.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 9453.5 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hajji, I., Chemek, M., Alzahrani, A.Y.A. et al. Synthesis, photophysical and chiroptical properties of 9–cyano[7]helicene for OLED applications. A combined experimental and theoretical investigation. J Mater Sci: Mater Electron 35, 542 (2024). https://doi.org/10.1007/s10854-024-12275-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12275-3

Navigation