Skip to main content
Log in

A study on the improvement of amorphous silicon/crystalline silicon heterojunction solar cells by microwave processing

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The postdeposition microwave heating treatment is carried out on the n-type crystalline silicon with bifacial deposited intrinsic hydrogenated amorphous silicon layers (i/c-Si/i) used as a precursor for amorphous silicon/crystalline silicon heterojunction (SHJ) solar cells. The passivation of i/c-Si/i heterostructure was improved significantly in 5 s microwave processing and two cycles of this processing later it could be stabilized. The results of FTIR show that the hydrogen within (i)a-Si:H layer is released rapidly during the process and the microstructure factor R* continues to decrease versus the processing time. An appropriate amount of hydrogen atoms released from Si–H bonds (especially weak bonds) move to the interface to saturate the dangling bonds favoring the passivation performance but excessive hydrogen release from the layers could lead to extremely poor passivation. The SHJ solar cell with a microwave-treated precursor of i/c-Si/i achieved an improved efficiency of 1.6%abs corresponding to the reference cell and improved surface passivation quality is the main reason for the efficiency gain, while the efficiency of the cells with the other two microwave-treated precursors of i/c-Si/i/p and n/i/c-Si/i/p increased by 1.1%abs and decreased by 0.7%abs, respectively, which may due to the difference in temperature rise during the processing. In addition, the cell with the microwave-treated precursor of i/c-Si/i shows a greater degradation of about 0.4%abs after storage in the N2 atmosphere for 312 h, while the cells with the other two precursors show good stability. It indicates that weak bonds formed by dopant atoms with hydrogen may be broken and released during the process, which may play an important facilitator role in the mechanism of degradation after the SHJ solar cells are fabricated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Data will be made available on reasonable request.

References

  1. M. Tanaka, M. Taguchi, T. Matsuyama, T. Sawada, S. Tsuda, S. Nakano, H. Hanafusa, Y. Kuwano, Jpn. J. Appl. Phys. 31, 3518 (1992)

    Article  CAS  Google Scholar 

  2. M. Taguchi, A. Terakawa, E. Maruyama, M. Tanaka, Prog. Photovolt. Res. Appl. 13, 481 (2005)

    Article  CAS  Google Scholar 

  3. X. Ru, M. Qu, J. Wang, T. Ruan, M. Yang, F. Peng, W. Long, K. Zheng, H. Yan, X. Xu, Solar Energy Mater. Solar Cells 215, 110643 (2020)

    Article  CAS  Google Scholar 

  4. S. De Wolf, C. Ballif, M. Kondo, Phys. Rev. B 85, 113302 (2012)

    Article  Google Scholar 

  5. Y. Liu, Y. Li, Y. Wu, G. Yang, L. Mazzarella, P. Procel-Moya, A.C. Tamboli, K. Weber, M. Boccard, O. Isabella, X. Yang, B. Sun, Mater. Sci. Eng. 142, 100579 (2020)

    Article  Google Scholar 

  6. H. Lin, M. Yang, X. Ru, G. Wang, S. Yin, F. Peng, C. Hong, M. Qu, J. Lu, L. Fang, C. Han, P. Procel, O. Isabella, P. Gao, Z. Li, X. Xu, Nat. Energy 8, 789 (2023)

    Article  CAS  Google Scholar 

  7. S. De Wolf, M. Kondo, Appl. Phy Lett. 90, 042111 (2007)

    Article  Google Scholar 

  8. S. De Wolf, S. Olibet, C. Ballif, Appl. Phy Lett. 93, 032101 (2008)

    Article  Google Scholar 

  9. A. Descoeudres, L. Barraud, S. De Wolf, B. Strahm, D. Lachenal, C. Guérin, Z.C. Holman, F. Zicarelli, B. Demaurex, J. Seif, J. Holovsky, C. Ballif, Appl. Phys. Lett. 99, 123506 (2011)

    Article  Google Scholar 

  10. M. Mews, T.F. Schulze, N. Mingirulli, L. Korte, Appl. Phy Lett. 102, 122106 (2013)

    Article  Google Scholar 

  11. E. Kobayashi, S. De Wolf, J. Levrat, G. Christmann, A. Descoeudres, S. Nicolay, M. Despeisse, Y. Watabe, C. Ballif, Appl. Phy Lett. 109, 153503 (2016)

    Article  Google Scholar 

  12. S. Bao, L. Yang, J. Huang, Y. Bai, J. Yang, J. Wang, L. Lu, L. Feng, X. Bai, F. Ren, D. Li, H. Jia, J. Mater. Sci. 32, 4045 (2021)

    CAS  Google Scholar 

  13. T.F. Schulze, H.N. Beushausen, T. Hansmann, L. Korte, B. Rech, Appl. Phys. Lett. 95, 182108 (2009)

    Article  Google Scholar 

  14. H. Sai, H.-J. Hsu, P.-W. Chen, P.-L. Chen, T. Matsui, Phys. Status Solidi 218, 2000743 (2021)

    Article  CAS  Google Scholar 

  15. A.A. Langford, M.L. Fleet, B.P. Nelson, W.A. Lanford, N. Maley, Phys. Rev. B Condens. Matter 45, 13367 (1992)

    Article  CAS  PubMed  Google Scholar 

  16. Q. Zeng, G. Guo, Z. Meng, L. Gao, H. Meng, L. Zhou, Mater. Sci. Semicond. Process. 154, 107192 (2023)

    Article  CAS  Google Scholar 

  17. A. Richter, S.W. Glunz, F. Werner, J. Schmidt, A. Cuevas, Phys. Rev. B 86, 165202 (2012)

    Article  Google Scholar 

  18. S. Bernardini, M.I. Bertoni, Phys. Status Solidi 216, 1800705 (2018)

    Article  Google Scholar 

  19. T.F. Schulze, H.N. Beushausen, C. Leendertz, A. Dobrich, B. Rech, L. Korte, Appl. Phy Lett. 96, 252102 (2010)

    Article  Google Scholar 

  20. T. Matsui, H. Sai, K. Saito, M. Kondo, Prog. Photovolt. Res. Appl. 21, 1363 (2013)

    Article  CAS  Google Scholar 

  21. T. Ruan, M. Qu, J. Wang, Y. He, X. Xu, C. Yu, Y. Zhang, H. Yan, J. Mater. Sci. 30, 13330 (2019)

    CAS  Google Scholar 

  22. L. Zhao, H. Diao, X. Zeng, C. Zhou, H. Li, W. Wang, Physica B 405, 61 (2010)

    Article  CAS  Google Scholar 

  23. S. Kim, V.A. Dao, C. Shin, J. Cho, Y. Lee, N. Balaji, S. Ahn, Y. Kim, J. Yi, Thin Solid Films 521, 45 (2012)

    Article  CAS  Google Scholar 

Download references

Funding

The authors of the present contribution gratefully acknowledge the support of the present work by the Key R&D Plan of Jiangxi Province, China under Project No.20213AAE02012.

Author information

Authors and Affiliations

Authors

Contributions

Qingguo Zeng: Conceptualization, Methodology, Investigation, Writing—Original draft, Data Curation, Writing—Review & Editing. Longwei Li: Methodology, Investigation, Formal analysis. Hongchen Meng: Investigation, Resources. Xiaoyuan Wu: Investigation, Data Curation. Xiuqin Wei: Data curation, Writing—review & editing. Lang Zhou: Supervision, Funding acquisition, Conceptualization, Writing—review & Editing.

Corresponding author

Correspondence to Lang Zhou.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, Q., Li, L., Meng, H. et al. A study on the improvement of amorphous silicon/crystalline silicon heterojunction solar cells by microwave processing. J Mater Sci: Mater Electron 35, 476 (2024). https://doi.org/10.1007/s10854-024-12241-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12241-z

Navigation