Skip to main content
Log in

Flower like cobalt-doped nickel oxide mesoporous microspheres for supercapacitor applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The flower-like NiO and Co-doped NiO mesoporous microspheres were successfully synthesized via hydrothermal method. The structural, morphological and electrochemical properties were studied. The X-ray diffraction analysis reveals the formation of cubic-structured NiO in both the samples. Pore size distribution spectrum confirms the mesoporous nature of the NiO and Co-doped NiO samples. Scanning electron microscopic images shows the formation of NiO and Co-doped NiO microspheres. The electrochemical nature of the NiO based samples were studied using cyclic voltammetric (CV), galvanostatic charge-discharge (GCD) and impedance analysis. The doping of Co enhances the electrochemical properties of NiO. GCD analysis exhibits the specific capacitance of 927 and 1052 Fg−1 at 1 A g−1 for NiO and Co doped NiO microspheres, respectively. The Co-doped NiO microspheres retained 100% of maximum capacitance even after 1000 cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Manuscript associated data is not provided.

References

  1. Y. Wang, J. Guo, T. Wang, Y.W. Yang, Nanomaterials 5, 1667 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. L. Y.Zhang, H. Li, Dong, J. Mater. Chem. A, 343 – 59 (2015)

  3. Y. L.Niu, F. Wang, C. Ruan, Z. Xu, C. Sun, X. Li, Y. Liu, J. Mater. Chem. A 4, 5669–5677 (2016)

    Article  Google Scholar 

  4. A. Dutta, A. Bonagiri, A. Nirmale, R. Nayak, M. Selvakumar, S. De, V. Kamath, P. Shetty, Mater. Lett. 339, 134111 (2023)

    Article  CAS  Google Scholar 

  5. P. Giannakou, R. Slade, M Shkunov Electrochim. Acta. 353, 136539 (2020)

    Article  CAS  Google Scholar 

  6. F. T.Ramachandran, R.K. Hamed, S.M. Raji, D. Majhi, Y.A. Barik, R.M. Kumar, L. Pachamuthu, S.A. Vijayalakshmi, J. Phys. Chem. Solid 180, 111467 (2023)

    Article  Google Scholar 

  7. X. D.Han, J. Jing, P. Wang, J. Song, Liu, J. Electroanal. chem. 682, 37–44 (2012)

    Article  Google Scholar 

  8. S. D.Liang, J. Wu, Z. Liu, C. Tian, Liang, J. Mater. Chem. A 4, 10609 (2016)

    Article  Google Scholar 

  9. H. Ren, R.Y.J. Wang, Q. Jin, M. Yang, D. Mao, D. Kisailus, H. Zhao, D. Wang, Nano lett. 14, 6679 (2014)

    Article  CAS  PubMed  Google Scholar 

  10. Z. Yang, F. Xu, W. Zhang, Z. Mei, B. Pei, X. Zhu, J. Power Sources. 246, 24 (2014)

    Article  CAS  Google Scholar 

  11. P. D.Han, X. Xu, D. Wang, M. Liu, Zhang, J. Solid State Chem. 203, 60 (2013)

    Article  Google Scholar 

  12. W. X.Qi, X. Zheng, G. Li, Sci. Rep. 633241(2016)

    Article  Google Scholar 

  13. H. H.Wang, Electrochim. Acta. 105, 353 (2013)

    Article  Google Scholar 

  14. L.L. VD.Dao, K.D.J. Larina, J.K. Lee, HS Choi Nanoscale. 6, 477 (2014)

    Article  Google Scholar 

  15. S.K. Meher, P. Justin, G.R. Rao, Nanoscale. 3, 683 (2011)

    Article  CAS  PubMed  Google Scholar 

  16. Z. N.Liu, X. Pan, J. Ding, G. Yang, L. Xu, M. Wang, Y. Liu, Zhang, J. Energy Chem. 41,209, (2020)

  17. W.Y.X. Jiang, S. Ding, B.Q. Li, J. Power Sources. 256, 440 (2014)

    Article  Google Scholar 

  18. J. H.Chen, L. Jiang, T. Zhang, D.Xia,H.Wan. J. Power Sources. 248, 28 (2014)

    Google Scholar 

  19. G. Srikesh, A.S. Nesaraj, Ceram. Int. 42, 5001 (2016)

    Article  CAS  Google Scholar 

  20. M.A. NA.Mala, S. Dar, G.N. Bhat, K.M. Sinha, Batoo, J. Mater. Sci. Mater. Electron. 33, 11582 (2022)

    Article  Google Scholar 

  21. G. Bharathy, P. Raji, Phys. B: Condens. Matter. 530, 75 (2018)

    Article  CAS  Google Scholar 

  22. H. HX.Chuo, Q. Gao, N. Yang, X.T. Bu, Zhang, J. Mater. Chem. A 2, 20462 (2014)

    Article  Google Scholar 

Download references

Funding

Acknowledgement One of the authors (K.K.P.) thanks Department of Science and Technology-SERC, New Delhi, India, for providing the financial support under Young Scientist scheme(SR/FTP/PS-030/2011).

Author information

Authors and Affiliations

Authors

Contributions

Material preparation, data collection and analysis were performed by [KKP]. The analysis and first draft of the manuscript was written by [SV].

Corresponding author

Correspondence to K. K. Purushothaman.

Ethics declarations

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Purushothaman, K.K., Vijayakumar, S. Flower like cobalt-doped nickel oxide mesoporous microspheres for supercapacitor applications. J Mater Sci: Mater Electron 35, 493 (2024). https://doi.org/10.1007/s10854-024-12184-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12184-5

Navigation