Skip to main content
Log in

Simulation and fabrication of a-Si:H thin-film solar cells: a comparative study of simulation and experimental results

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Both simulation and experimental studies on single-junction hydrogenated amorphous silicon (a-Si:H) thin-film solar cells are done. Hydrogenated amorphous silicon (a-Si:H) thin-film solar cells with n-i-p structure are simulated using AFORS-HET (Automated For Simulation of Heterostructure) software and fabricated using radio-frequency plasma-enhanced chemical vapor deposition (RF-PECVD) (13.56 MHz) multi-chamber system at a low temperature of 180 °C. The effect of emitter layer (a-Si:H (p)) doping and absorber layer (a-Si:H (i)) thickness is studied. Further, simulation results are compared with the experimental results. To map the diborane (B2H6) flow rate in the experiment to corresponding doping concentration in simulation, the diborane (B2H6) flow rate is varied from 8 to 14 sccm, and emitter layer doping from 7.2\(\times\)1019 to 8.4\(\times\)1019 cm−3. It is observed that solar cell parameters \({J}_{sc}\), \({V}_{oc}\) corresponding the doping concentration 7.6\(\times\)1019 cm−3 in simulation matches quite well when diborane (B2H6) flow rate is 10 sccm in the experiment. The solar cell’s efficiency is also found to be within error bars with values of 5.79% for simulation and 5.50% for experiment. Using these doping concentrations and B2H6 flow rate subsequently, the absorber layer thickness is varied from 200 to 350 nm to further optimize the device thickness to improve the efficiency. The simulation results indicate that increasing the thickness leads to improved \({J}_{sc}\) and overall performance of the solar cell. A similar trend is observed from the experimentally fabricated devices with the same variation, which shows a good match between simulation and experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

All the data generated and analyzed for this work are included within the article.

References

  1. M. Okil, M.S. Salem, T.M. Abdolkader, A. Shaker, Silicon. 14, 1895 (2022)

    Article  CAS  Google Scholar 

  2. M. Stuckelberger, R. Biron, N. Wyrsch, F. Haug, C. Ballif, Renew. Sustain. Energy Rev. 76, 1497 (2017)

    Article  CAS  Google Scholar 

  3. F. Meillaud, M. Boccard, G. Bugnon, M. Despeisse, S. Hänni, F.-J. Haug, J. Persoz, J.-W. Schüttauf, M. Stuckelberger, C. Ballif, Mater. Today 18, 378 (2015)

    Article  Google Scholar 

  4. A. Lambertz, F. Finger, R.E.I. Schropp, U. Rau, V. Smirnov, Prog Photovoltaics Res. Appl. 23, 939 (2015)

    Article  CAS  Google Scholar 

  5. M.A. Green, E.D. Dunlop, M. Yoshita, N. Kopidakis, K. Bothe, G. Siefer, X. Hao, Prog Photovoltaics Res. Appl. 651 (2023)

  6. R. Madaka, V. Kanneboina, P. Agarwal, J. Electron. Mater. 47, 4710 (2018)

    Article  CAS  Google Scholar 

  7. C. Koch, M. Ito, M. Schubert, Sol Energy Mater. Sol Cells. 68, 227 (2001)

    Article  CAS  Google Scholar 

  8. K. Belrhiti Alaoui, S. Laalioui, Z. Naimi, B. Ikken, A. Outzourhit, AIP Adv. 10, 95315 (2020)

    Article  CAS  Google Scholar 

  9. R. Madaka, V. Kanneboina, P. Agarwal, Thin Solid Films. 662, 155 (2018)

    Article  CAS  Google Scholar 

  10. D.E. Carlson, C.R. Wronski, Appl. Phys. Lett. 28, 671 (1976)

    Article  CAS  Google Scholar 

  11. J.K. Arch, F.A. Rubinelli, J.Y. Hou, S.J. Fonash, J. Appl. Phys. 69, 7057 (1991)

    Article  CAS  Google Scholar 

  12. S. Guha, Renew. Energy. 15, 189 (1998)

    Article  CAS  Google Scholar 

  13. J. Yang, A. Banerjee, S. Guha, Sol Energy Mater. Sol Cells. 78, 597 (2003)

    Article  CAS  Google Scholar 

  14. M.A. Green, J. Mater. Sci. Mater. Electron. 18, 15 (2007)

    Article  Google Scholar 

  15. M.I. Kabir, Z. Ibrahim, K. Sopian, N. Amin, Sol Energy Mater. Sol Cells. 94, 1542 (2010)

    Article  CAS  Google Scholar 

  16. M.N. van den Donker, A. Gordijn, H. Stiebig, F. Finger, B. Rech, B. Stannowski, R. Bartl, E.A.G. Hamers, R. Schlatmann, G.J. Jongerden, Sol Energy Mater. Sol Cells. 91, 572 (2007)

    Article  Google Scholar 

  17. D. Hamdani, S. Prayogi, Y. Cahyono, G. Yudoyono, D. Darminto, Int. J. Renew. Energy Dev. 11, 173 (2022)

    Article  CAS  Google Scholar 

  18. G. Ahmad, S. Mandal, A.K. Barua, T.K. Bhattacharya, J.N. Roy, IEEE J. Photovoltaics. 7, 414 (2017)

    Article  Google Scholar 

  19. R. Madaka, V. Kanneboina, P. Agarwal, Semicond. Sci. Technol. 33(8), 085009 (2018)

    Article  Google Scholar 

  20. H. Sai, T. Matsui, K. Matsubara, Appl. Phys. Lett. 109, 1 (2016)

    Article  Google Scholar 

  21. A. Belfar, Sol Energy. 114, 408 (2015)

    Article  CAS  Google Scholar 

  22. J. Fang, Q. Ren, F. Wang, C. Wei, B. Yan, Y. Zhao, X. Zhang, Sol Energy Mater. Sol Cells. 185, 307 (2018)

    Article  CAS  Google Scholar 

  23. M. Tan, S. Zhong, W. Wang, W. Shen, AIP Adv. 7(8), 085016 (2017)

    Article  Google Scholar 

  24. V. Kanneboina, R. Madaka, P. Agarwal, Sol Energy. 166, 255 (2018)

    Article  CAS  Google Scholar 

  25. J. Cho, Y. Hun, B. Choi, A. Cho, A. Lee, M. Jeong, K. Kim, S. Kyu, J. Hyung, J. Yoo, D. Shin, I. Jeong, J. Gwak, Sol Energy Mater. Sol Cells. 202, 110078 (2019)

    Article  CAS  Google Scholar 

  26. D. Berrian, M. Fathi, M. Kechouane, J. Electron. Mater. 47, 1140 (2018)

    Article  CAS  Google Scholar 

  27. D. Hamdani, Y. Cahyono, G. Yudoyono, Darminto, Mater. Sci. Forum. 966 MSF, 409 (2019)

    Article  Google Scholar 

  28. D. Hamdani, S. Prayogi, Y. Cahyono, G. Yudoyono, D. Darminto, Cogent Eng. 9, 2110726 (2022)

    Article  Google Scholar 

  29. A. Belfar, W.H. Kouider, Optik (Stuttg). 244, 167610 (2021)

    Article  CAS  Google Scholar 

  30. N.I. Sarkar, H.R. Ghosh, ECCE 2017 - Int. Conf. Electr. Comput. Commun. Eng. 670 (2017)

  31. F.X.A. Abega, A.T. Ngoupo, J.M.B. Ndjaka, Int. J. Photoenergy (2021). https://doi.org/10.1155/2021/7506837

    Article  Google Scholar 

  32. I. Benigno, D. Darminto, IPTEK J. Sci. (2017). https://doi.org/10.12962/j23378530.v2i3.a3184

    Article  Google Scholar 

  33. W.H. Son, T.Y. Lee, S.Y. Choi, D. Jung, Mol. Cryst. Liq Cryst. 662, 25 (2018)

    Article  CAS  Google Scholar 

  34. L. Hao, M. Zhang, M. Ni, X. Shen, X. Feng, J. Electron. Mater. 48, 4688 (2019)

    Article  CAS  Google Scholar 

  35. V. Kanneboina, R. Madaka, P. Agarwal, J. Mater. Sci. Mater. Electron. 32, 4457 (2021)

    Article  CAS  Google Scholar 

  36. L. Bechane, N. Bouarissa, K. Loucif, Trans. Electr. Electron. Mater. 22, 531 (2021)

    Article  Google Scholar 

  37. A.T. Ngoupo, F.X.A. Abega, A.M.N. Abena, J.M.B. Ndjaka, J. Comput. Electron. 22, 423 (2023)

    CAS  Google Scholar 

  38. W.H. Kouider, A. Belfar, M. Belmekki, Optik. 238, 166749 (2021)

    Article  Google Scholar 

  39. R. Stangl, M. Kriegel, M. Schmidt, in 2006 IEEE 4th World Conf. Photovolt. Energy Conf. 1350–1353 (2006)

  40. R. Stangl, C. Leendertz, J. Haschke, Sol. Energy 14(319), 352 (2010)

    Google Scholar 

  41. R. Stangl, C. Leendertz, in edited by, W.G. J., H.M. van Sark, L. Korte, and (eds.), Berlin, Heidelberg, 2012), pp. 445–458

  42. R. Varache, C. Leendertz, M.E. Gueunier-Farret, J. Haschke, D. Muñoz, L. Korte, Sol Energy Mater. Sol Cells. 141, 14 (2015)

    Article  CAS  Google Scholar 

  43. A. Belfar, B. Amiri, H. Aït-kaci, J. Nano- Electron. Phys. 7, 1 (2015)

    Google Scholar 

  44. S. Singh, S. Kumar, N. Dwivedi, Sol Energy. 86, 1470 (2012)

    Article  CAS  Google Scholar 

  45. M. Sharma, S. Kumar, N. Dwivedi, S. Juneja, A.K. Gupta, S. Sudhakar, K. Patel, Sol Energy. 97, 176 (2013)

    Article  CAS  Google Scholar 

  46. H. Deka, A. Sunaniya, P. Agarwal, IEEE J. Photovoltaics. 12, 204 (2022)

    Article  Google Scholar 

  47. M. Sharma, D. Chaudhary, N. Dwivedi, S. Sudhakar, S. Kumar, Silicon. 9, 59 (2017)

    Article  CAS  Google Scholar 

  48. N. Dwivedi, S. Kumar, A. Bisht, K. Patel, S. Sudhakar, Sol Energy. 88, 31 (2013)

    Article  CAS  Google Scholar 

  49. M. Sharma, S. Juneja, S. Sudhakar, D. Chaudhary, S. Kumar, Mater. Sci. Semicond. Process. 43, 41 (2016)

    Article  CAS  Google Scholar 

  50. J. Sritharathikhun, A. Moollakorn, S. Kittisontirak, A. Limmanee, K. Sriprapha, Curr. Appl. Phys. 11, S17 (2011)

    Article  Google Scholar 

  51. J. Ganji, A. Kosarian, H. Kaabi, Silicon  12, 723 (2020)

    Article  CAS  Google Scholar 

  52. R.A. Street, Hydrogenated Amorphous Silicon (Cambridge University Press, Cambridge, 1991)

    Book  Google Scholar 

  53. Q. Wang, Sol Energy Mater. Sol Cells. 129, 64 (2014)

    Article  CAS  Google Scholar 

  54. M.I. Kabir, S.A. Shahahmadi, V. Lim, S. Zaidi, K. Sopian, N. Amin, Int. J. Photoenergy (2012). https://doi.org/10.1155/2012/460919

    Article  Google Scholar 

  55. S.M. Iftiquar, J. Jung, C. Shin, H. Park, J. Park, J. Jung, J. Yi, Sol Energy Mater. Sol Cells. 132, 348 (2015)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The PECVD multi-chamber system used for fabrication of solar cells is built by the fund received from DST (Grant No. DST/TM/SERI/2K11/78(G)) and DRDO (Grant No. ERIP/ER/0900376/M/01/1297) New Delhi, India. We also acknowledge Helmholtz–Zentrum Berlin (HZB) for providing free AFORS-HET software for simulation. M.S. Gangwar would like to thank University Grant Commission (UGC), India, for providing financial support under the NET-JRF scheme.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

MSG: Conceptualization, methodology, formal analysis, and investigation, Writing: Original draft preparation.  PA : Conceptualization, validation, supervision, Writing: Reviewing and Editing.

Corresponding author

Correspondence to Pratima Agarwal.

Ethics declarations

Competing interests

The authors declare that they have no competing interests that are relevant to the content of this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gangwar, M.S., Agarwal, P. Simulation and fabrication of a-Si:H thin-film solar cells: a comparative study of simulation and experimental results. J Mater Sci: Mater Electron 35, 487 (2024). https://doi.org/10.1007/s10854-024-12149-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12149-8

Navigation