Skip to main content
Log in

Relaxation behavior of BF-BT based ceramics and improved energy storage performance under low electric field

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

With the increasing demand for portable electronics, power electronics and other devices, energy storage materials with high power density and large energy storage density are becoming more and more important. BiFeO3-BaTiO3 lead-free ferroelectric ceramics are deemed as a potential lead-free energy storage material due to their high spontaneous polarization and high Curie temperature. However, high remanent polarization has become a serious obstacle to its practical application. In this work, 0.67Bi(1-x)SmxFeO3-0.33BaTiO3 (BSxF-BT, 0 ≤ x ≤ 0.10) was prepared by the conventional solid phase sintering method. The phase transforms from rhombohedral to pseudocubic, and the dielectric and electrical data reveal that relaxor ferroelectrics are favorable for achieving the small size polar nanoregions and enhanced relaxation behavior. Due to enhanced relaxation behavior by doping Sm3+, the recoverable energy storage density (Wrec) reaches 1.99 J/cm3, and the energy storage efficiency (η) is 57% at a low electric field (190 kV/cm), which is higher than the undoped ceramic (Wrec = 0.272 J/cm3 and η = 26%). This work also puts forward the concept of Ergodic relaxor ferroelectrics and Non-ergodic relaxor ferroelectrics to explain the improvement of energy storage performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

The datasets generated and analyzed during the current study are available from the author upon reasonable request.

References

  1. G.Z. Zhang, S.J. Zhang, Q. Wang, Journal of Materiomics 8, 1287 (2022)

    Article  Google Scholar 

  2. J. Joseph, Z.X. Cheng, S.J. Zhang, Journal of Materiomics 8, 731 (2022)

    Article  Google Scholar 

  3. X.H. Hao, J. Adv. Dielect. 03, 1330001 (2013)

    Article  Google Scholar 

  4. G.R. Love, J. Am. Ceram. Soc. 73, 323 (1990)

    Article  CAS  Google Scholar 

  5. H. Qi, A.W. Xie, A. Tian, R.Z. Zuo, Adv. Energy Mater. 10, 1903338 (2020)

    Article  CAS  Google Scholar 

  6. X.Y. Dong, X. Li, X.L. Chen, H.Y. Chen, C.C. Sun, J.P. Shi, F.H. Pang, H.F. Zhou, Journal of Materiomics 7, 629 (2021)

    Article  Google Scholar 

  7. L.F. Zhu, L. Zhao, Y.K. Yan, H.Y. Leng, X.T. Li, L.Q. Cheng, X.M. Xiong, S. Priya, J. Mater. Chem. A 9, 9655 (2021)

    Article  CAS  Google Scholar 

  8. X.K. Wei, C.L. Jia, K. Roleder, R.E. Dunin-Borkowski, J. Mayer, Adv. Funct. Mater. 31, 2008609 (2021)

    Article  CAS  Google Scholar 

  9. Y.X. Zhou, J.K. Xia, X.F. Chen, G.S. Wang, J. Am. Ceram. Soc. 106, 448 (2023)

    Article  CAS  Google Scholar 

  10. Z.X. Liu, C.G. Wang, X.B. Zhang, G.S. Chen, A.H. Zhang, M. Zeng, D.Y. Chen, Z.P. Hou, Z. Fan, M.H. Qin, X.B. Lu, X.S. Gao, J.-M. Liu, A.C.S. Appl, Mater. Interfaces 14, 53690 (2022)

    Article  CAS  Google Scholar 

  11. R.M. Pallares, X.D. Su, S.H. Lim, N.T.K. Thanh, J. Mater. Chem. C 4, 53 (2016)

    Article  CAS  Google Scholar 

  12. N.H. Khansur, T. Rojac, D. Damjanovic, C. Reinhard, K.G. Webber, J.A. Kimpton, J.E. Daniels, J. Am. Ceram. Soc. 98, 3884 (2015)

    Article  CAS  Google Scholar 

  13. G. Catalan, K. Sardar, N.S. Church, J.F. Scott, R.J. Harrison, S.A.T. Redfern, Phys. Rev. B 79, 212415 (2009)

    Article  Google Scholar 

  14. W.Q. Qian, H.T. Wu, Y. Yang, Adv Elect Materials 8, 2200190 (2022)

    Article  CAS  Google Scholar 

  15. F. Kang, L.X. Zhang, L.Q. He, Q.Z. Sun, Z.P. Wang, R.R. Kang, P. Mao, C.Z. Zhu, J.P. Wang, J. Alloy. Compd. 864, 158917 (2021)

    Article  CAS  Google Scholar 

  16. Y. Yin, Y.C. Tang, W.Y. Pan, A.Z. Song, J.R. Yu, B.P. Zhang, Ceram. Int. 47, 9486 (2021)

    Article  CAS  Google Scholar 

  17. Q.J. Zheng, L.L. Luo, K.H. Lam, N. Jiang, Y.Q. Guo, D.M. Lin, J. Appl. Phys. 116, 184101 (2014)

    Article  Google Scholar 

  18. B.W. Xun, A.Z. Song, J.R. Yu, Y. Yin, J.-F. Li, B.-P. Zhang, A.C.S. Appl, Mater. Interfaces 13, 4192 (2021)

    Article  CAS  Google Scholar 

  19. X.C. Wang, W.Q. Cai, Z. Xiao, G.G. Yang, X.M. Yu, J.W. Chen, D.C. Chen, Q.F. Zhang, M. Chen, J. Eur. Ceram. Soc. 41, 5163 (2021)

    Article  CAS  Google Scholar 

  20. D. Li, Y. Lin, M. Zhang, H.B. Yang, Chem. Eng. J. 392, 123729 (2020)

    Article  CAS  Google Scholar 

  21. Z. Song, H.X. Liu, S.J. Zhang, Z.J. Wang, Y.T. Shi, H. Hao, M.H. Cao, Z.H. Yao, Z. Yu, J. Eur. Ceram. Soc. 34, 1209 (2014)

    Article  CAS  Google Scholar 

  22. T.M. Correia, M. McMillen, M.K. Rokosz, P.M. Weaver, J.M. Gregg, G. Viola, M.G. Cain, J. Am. Ceram. Soc. 96, 2699 (2013)

    Article  CAS  Google Scholar 

  23. S.X. Xue, S.H. Liu, W.Q. Zhang, J.W. Wang, L.J. Tang, B. Shen, J.W. Zhai, J. Alloy. Compd. 617, 418 (2014)

    Article  CAS  Google Scholar 

  24. Z.L. Wang, H.F. Geng, H.Y. Xiao, Y.P. Guo, J. Am. Ceram. Soc. 105, 317 (2022)

    Article  CAS  Google Scholar 

  25. M. Qin, L.M. Zhang, H.J. Wu, Advanced Science 9, 2105553 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. L. Xia, T. Tybell, S.M. Selbach, J. Mater. Chem. C 7, 4870 (2019)

    Article  CAS  Google Scholar 

  27. K. Uchino, S. Nomura, Ferroelectrics 44, 55 (1982)

    Article  CAS  Google Scholar 

  28. A.A. Bokov, Z.-G. Ye, J. Mater. Sci. 41, 31 (2006)

    Article  CAS  Google Scholar 

  29. Z.T. Chen, X.Y. Bu, B.X. Ruan, J. Du, P. Zheng, L.L. Li, F. Wen, W.F. Bai, W. Wu, L. Zheng, Y. Zhang, J. Eur. Ceramic Soc. 40(15), 5450 (2020)

    Article  CAS  Google Scholar 

  30. T. Wang, L. Jin, T. Ye, L.L. Shu, Q.Y. Hu, X.Y. Wei, Mater. Lett. 137, 79 (2014)

    Article  CAS  Google Scholar 

  31. L.-F. Zhu, X.-W. Lei, L. Zhao, M.I. Hussain, G.-Z. Zhao, B.-P. Zhang, Ceram. Int. 45, 20266 (2019)

    Article  CAS  Google Scholar 

  32. Y. He, X.R. Nie, S.D. Xu, Y.Q. Sun, Z.H. Peng, D. Wu, L.L. Wei, P.F. Liang, X.L. Chao, Z.P. Yang, Solid State Sci. 135, 107086 (2023)

    Article  CAS  Google Scholar 

Download references

Funding

This study was financially supported by the National Natural Science Foundation of China (Nos. 52072028 and 52032007) and National Key Research and Development Program (No. 2022YFB3807400).

Author information

Authors and Affiliations

Authors

Contributions

All authors were involved in experimental design, sample preparation, data collection, and results discussion. The manuscript was written by LTX, and all authors read and commented on the final manuscript.

Corresponding author

Correspondence to Bo-Ping Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, LT., Zhou, XX., Tang, YC. et al. Relaxation behavior of BF-BT based ceramics and improved energy storage performance under low electric field. J Mater Sci: Mater Electron 35, 483 (2024). https://doi.org/10.1007/s10854-024-12127-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12127-0

Navigation