Skip to main content
Log in

Investigation of concurrent flow of nitrogen and oxygen for the oxidation of cerium to cerium oxide films

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Silicon-based metal-oxide-semiconductor (MOS) device was fabricated and investigated using cerium oxide (CeO2) films as the high dielectric constant passivation layers, which were produced by introducing a post-sputter oxidation process in a nitrogen infused oxygen ambient at 800ºC onto the direct current (DC) sputtered cerium films. Formation of cubic fluorite CeO2 phases along with an increase in crystallite size was obtained with the increase on nitrogen gas flow rate from 0 to 0.7 slm in the nitrogen infused oxygen ambient. Although the implementation of nitrogen gas flow rates has improved densification of CeO2 films as well as impeding the growth of the silicon dioxide interfacial layer, bandgap narrowing happened when the flow rate of the nitrogen gas increased beyond/at 0.5 slm, which could be associated with the presence of larger amount of nitrogen ions in the samples, resulting in an overlapping of the nitrogen 2p states and O2p states, and hence reducing the bandgap width. In comparison, CeO2 film subjected to post-sputter oxidation in 0.3 slm nitrogen gas flow rate could be the optimum parameter to be considered for further investigation in future work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

The raw/processed data required to reproduce these findings cannot be shared at this time as the data also form part of an ongoing study.

References

  1. A. Rao, J. Dsa, S. Goyal, B.R. Singh, Stress induced degradation in sputtered ZrO2 thin films on silicon for nano-MOSFET’s, in Physics of Semiconductor Devices. ed. by V. Jain, A. Verma (Springer, Cham, 2014). https://doi.org/10.1007/978-3-319-03002-9_139

    Chapter  Google Scholar 

  2. G.D. Wilk, R.M. Wallace, J.M. Anthony, High-κ gate dielectrics: current status and materials properties considerations. J. Appl. Phys. 89, 5243–5275 (2001)

    ADS  CAS  Google Scholar 

  3. J. Robertson, High dielectric constant gate oxides for metal oxide Si transistors. Rep. Prog. Phys. 69, 327–396 (2005)

    ADS  Google Scholar 

  4. C.-H. Chen, Y.-K. Fang, S.-F. Ting, W.-T. Hsieh, C.-W. Yang, T.-H. Hsu, M.-C. Yu, T.-L. Lee, S.-C. Chen, C.-H. Yu, M.-S. Liang, Downscaling limit of equivalent oxide thickness in formation of ultrathin gate dielectric by thermal-enhanced remote plasma nitridation. IEEE Trans. Electron. Devices. 49, 840–846 (2002)

    ADS  CAS  Google Scholar 

  5. J.C. Ranuárez, M.J. Deen, C.-H. Chen, A review of gate tunneling current in MOS devices. Microelectron. Reliab. 46, 1939–1956 (2006)

    Google Scholar 

  6. Y. Nishikawa, N. Fukushima, N. Yasuda, K. Nakayama, S. Ikegawa, Electrical properties of single crystalline CeO2 high-k gate dielectrics directly grown on Si (111). Jpn. J. Appl. Phys. 41, 2480–2483 (2002)

    ADS  CAS  Google Scholar 

  7. C.-H. Chen, I. Y-K Chang, J.Y.-M. Lee, F.-C. Chiu, Electrical characterization of CeO2/Si interface properties of metal-oxide-semiconductor field-effect transistors with CeO2 gate dielectric. Appl. Phys. Lett. 92, 043507–043501 (2008)

    ADS  Google Scholar 

  8. F.-C. Chiu, C.-M. Lai, Optical and electrical characterizations of cerium oxide thin films. J. Phys. D 43, 075104–075101 (2010)

    ADS  Google Scholar 

  9. S. Vangelista, R. Piagge, S. Ek, T. Sarnet, G. Ghidini, C. Martella, A. Lamperti, Structural, chemical and optical properties of cerium dioxide film prepared by atomic layer deposition on Tin and Si substrates. Thin Solid Films. 636, 78–84 (2017)

    ADS  CAS  Google Scholar 

  10. N.V. Skorodumova, R. Ahuja, S.I. Simak, I.A. Abrikosov, B. Johansson, B.I. Lundqvist, Electronic, bonding, and optical properties of CeO2 and Ce2O3 from first principles. Phys. Rev. B 64, 115108–115101 (2001)

    ADS  Google Scholar 

  11. J.C. Wang, Y.P. Hung, C.L. Lee, T.F. Lei, Improved characteristics of ultrathin CeO2 by using postnitridation annealing. J. Electrochem. Soc. 151, F17–F21 (2004)

    CAS  Google Scholar 

  12. Y. Nishikawa, T. Yamaguchi, M. Yoshiki, H. Satake, N. Fukushima, Interfacial properties of single-crystalline CeO2 high-k gate dielectrics directly grown on Si (111). Appl. Phys. Lett. 81, 4386–4388 (2002)

    ADS  CAS  Google Scholar 

  13. H.J. Quah, K.Y. Cheong, Z. Hassan, Z. Lockman, F. Jasni, W.F. Lim, Effects of postdeposition annealing in argon ambient on metallorganic decomposed CeO2 gate spin coated on silicon. J. Electrochem. Soc. 157, H6–H12 (2009)

    Google Scholar 

  14. J. Hubbard, D.G. Schlom, Thermodynamic stability of binary oxides in contact with silicon. J. Mater. Res. 11, 2757–2776 (1996)

    ADS  CAS  Google Scholar 

  15. R.N. Kumari, A. Aljawfi, K.H. Vij, M. Chae, P.A. Hashim, Alvi, S. Kumar, Band gap engineering, electronic state and local atomic structure of Ni doped CeO2 nanoparticles. J. Mater. Sci.: Mater. Electron. 30, 4562–4571 (2019)

    CAS  Google Scholar 

  16. D. Lu, P. Zheng, C. Zhang, P. Liang, Liu, Y. Tong, Facile synthesis of free-standing CeO2 nanorods for photoelectrochemical applications. Chem. Commun. 46, 7721–7723 (2010)

    CAS  Google Scholar 

  17. E. Khalifi, F. Picaud, M. Bizi, Electronic and optical properties of CeO2 from first principles calculations. Anal. Methods. 8, 5045–5052 (2016)

    Google Scholar 

  18. F.-C. Chiu, Current conduction mechanisms in CeO2 thin films. Electrochem. Solid-State Lett. 11, H135–H137 (2008)

    CAS  Google Scholar 

  19. C. Jer Chyi, L. Kuo Cheng, Tan Fu, L. Chung Len, Characteristics improvement and carrier transportation of CeO2 gate dielectrics with rapid thermal annealing. in Proceedings of the 11th International Symposium on the Physical and Failure Analysis of Integrated Circuits IPFA 2004. (2004) 161–164

  20. A.R. Mohd Zabidi, W.F. Lim, Formation of cerium oxide film via post-sputter oxidation of cerium in nitrogen/oxygen/nitrogen ambient. J. Alloys Compd. 851, 156786–156781 (2021)

    CAS  Google Scholar 

  21. D.P. Brunco, A. Dimoulas, N. Boukos, M. Houssa, T. Conard, K. Martens, C. Zhao, F. Bellenger, M. Caymax, M. Meuris, M.M. Heyns, Materials and electrical characterization of molecular beam deposited CeO2 and CeO2/HfO2 bilayers on Germanium. J. Appl. Phys. 102, 024104–024101 (2007)

    ADS  Google Scholar 

  22. C.X. Yi, S.K. Wang, X.B. Xu, Y.F. Tian, M.D. Bao, Study on plasma cleaning of surface contaminants on pure copper. Mater. Res. Express. 10, 016506–016501 (2023)

    ADS  Google Scholar 

  23. P. Kumar, P. Kumar, A. Kumar, I. Sulania, F. Chand, A. Kandasami, Structural, optical and magnetic properties of N ion implanted CeO2 thin films. RSC Adv. 7, 9160–9168 (2017)

    ADS  CAS  Google Scholar 

  24. G.V. Gibbs, N.L. Ross, D.F. Cox, K.M. Rosso, B.B. Iversen, M.A. Spackman, Bonded radii and the contraction of the electron density of the oxygen atom by bonded interactions. J. Phys. Chem. A 117, 1632–1640 (2013)

    CAS  PubMed  Google Scholar 

  25. R.K. Hailstone, A.G. DiFrancesco, J.G. Leong, T.D. Allston, K.J. Reed, A study of lattice expansion in CeO2 nanoparticles by transmission electron microscopy. J. Phys. Chem. C 113, 15155–15159 (2009)

    CAS  Google Scholar 

  26. J. Pelleg, E. Elish, D. Mogilyanski, Evaluation of average domain size and microstrain in a silicide film by the Williamson-Hall method. Metall. Mater. Trans. A 36, 3187–3194 (2005)

    Google Scholar 

  27. L. Ntozakhe, R.T. Taziwa, H.H. Mungondori, Influence of nitrogen doping on TiO2 nanoparticles synthesized by pneumatic spray pyrolysis method. Mater. Res. Express. 6, 0850–0859 (2019)

    Google Scholar 

  28. R. Kumari, A. Sahai, N. Goswami, Effect of nitrogen doping on structural and optical properties of ZnO nanoparticles. Progress Nat. Science: Mater. Int. 25, 300–309 (2015)

    CAS  Google Scholar 

  29. M.F. Al-Kuhaili, Optical properties of hafnium oxide thin films and their application in energy-efficient windows. Opt. Mater. 27, 383–387 (2004)

    ADS  CAS  Google Scholar 

  30. S.S. Pan, Y.X. Zhang, X.M. Teng, G.H. Li, L. Li, Optical properties of nitrogen-doped SnO2 films: effect of the electronegativity on refractive index and band gap. J. Appl. Phys. 103, 093103 (2008)

    ADS  Google Scholar 

  31. A. Pathinettam Padiyan, Marikani, K.R. Murali, Influence of thickness and substrate temperature on electrical and photoelectrical properties of vacuum-deposited CdSe thin films. Mater. Chem. Phys. 78, 51–58 (2003)

    Google Scholar 

  32. G.K. Williamson, R.E. Smallman, Dislocation densities in some annealed and cold-worked metals from measurements on the X-ray Debye-Scherrer spectrum. Philos. Magazine: J. Theor. Exp. Appl. Phys. 1, 34–46 (1956)

    CAS  Google Scholar 

  33. S. Zhang, D. Sun, Y. Fu, H. Du, Q. Zhang, Effect of sputtering target power on preferred orientation in nc-tin/a-SiNx nanocomposite thin films. J. Metast. Nanocryst. Mater. 23, 175–178 (2005)

    CAS  Google Scholar 

  34. R. Suresh, V. Ponnuswamy, R. Mariappan, Consequence of source material on the surface properties of nebulizer spray coated cerium oxide thin films. Vacuum. 109, 94–101 (2014)

    ADS  CAS  Google Scholar 

  35. G. Wang, Q. Mu, T. Chen, Y. Wang, Synthesis, characterization and photoluminescence of CeO2 nanoparticles by a facile method at room temperature. J. Alloys Compd. 493, 202–207 (2010)

    CAS  Google Scholar 

  36. R. Murugan, G. Vijayaprasath, M. Thangaraj, T. Mahalingam, S. Rajendran, M. Arivanandhan, A. Loganathan, Y. Hayakawa, G. Ravi, Defect assisted room temperature ferromagnetism on Rf Sputtered Mn doped CeO2 thin films. Ceram. Int. 43, 399–406 (2016)

    Google Scholar 

  37. Q. Han, W. Wu, W. Liu, Y. Yang, The peak shift and evolution of upconversion luminescence from CsPbBr3 nanocrystals under femtosecond laser excitation. RSC Adv. 57, 35757–35764 (2017)

    ADS  Google Scholar 

  38. K.F. Albertin, M.A. Valle, I. Pereyra, Study of MOS capacitors with TiO2 and SiO2/TiO2 gate dielectric. J. Integr. Circuits Syst. 2, 89–93 (2007)

    Google Scholar 

  39. R. López, R. Gómez, Band-gap energy estimation from diffuse reflectance measurements on sol–gel and commercial TiO2: a comparative study. J. Solgel Sci. Technol. 61, 1–7 (2012)

    Google Scholar 

  40. Z. Sun, V.F. Pichugin, K.E. Evdokimov, M.E. Konishchev, M.S. Syrtanov, V.N. Kudiiarov, K. Li, S.I. Tverdokhlebov, Effect of nitrogen-doping and post annealing on wettability and band gap energy of TiO2 thin film. Appl. Surf. Sci. 500, 144048–144041 (2020)

    CAS  Google Scholar 

  41. D. Huang, S. Liao, S. Quan, L. Liu, Z. He, J. Wan, W. Zhou, Synthesis and characterization of visible light responsive N–TiO2 mixed crystal by a modified hydrothermal process. J. Non-cryst. Solids. 354, 3965–3972 (2008)

    ADS  CAS  Google Scholar 

  42. L. Wang, Z. Li, M. Li, S. Li, Y. Lu, N. Qi, J. Zhang, C. Xie, C. Wu, L.-B. Luo, Self-powered filterless narrow-band p–n heterojunction photodetector for low background limited near-infrared image sensor application. ACS Appl. Mater. Interfaces. 12, 21845–21853 (2020)

    CAS  PubMed  Google Scholar 

  43. J. Wilt, R. Sakidja, R. Goul, J.Z. Wu, The effect of an interfacial layer on electron tunneling through atomically-thin Al2O3 tunnel barriers. ACS Appl. Mater. Interfaces. 9, 37468–37475 (2017)

    CAS  PubMed  Google Scholar 

  44. Y.E. Mengchao, M.A. Jinxia, X. Chao, H.E. Fengjiao, Electrochemical preparation and properties of Al2O3 nanoparticles reinforced Cu-based composites. Electrochem. Soc. Japan. 91, 1–24 (2023)

    Google Scholar 

Download references

Funding

The authors would like to acknowledge the financial support from Ministry of Higher Education Malaysia for Fundamental Research Grant Scheme (FRGS) with Project Code: FRGS/1/2019/TK05/USM/02/2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Way Foong Lim.

Ethics declarations

Competing interests

The authors have not disclosed any competing interests.

Additional information

Publisher’s Note

Springer nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zabidi, A.R.M., Hassan, Z. & Lim, W.F. Investigation of concurrent flow of nitrogen and oxygen for the oxidation of cerium to cerium oxide films. J Mater Sci: Mater Electron 35, 434 (2024). https://doi.org/10.1007/s10854-024-12105-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12105-6

Navigation