Skip to main content
Log in

Fully printed ethanol transparent paper sensor based on ZnO/rGO nanocomposites

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Flexible and easy fabrication gas sensors can be utilized in various applications. In this study, we have proposed and prepared zinc oxide (ZnO) nanorods and reduced grapheme oxide (rGO) nanocomposite materials, fully printed on highly transparent paper substrates, and thoroughly investigated and optimized the performance of these gas sensors to ethanol at room temperature (25 °C). Among them, the average length of the ZnO nanorods is 200 nm and the diameter is 30 nm, integrated with rGO, the two-dimensional ZnO/rGO nanocomposites were obtained. The ratios of ZnO and rGO in the materials were controlled, ZnO/rGO nanocomposites ink was prepared, and thin films were coated on paper substrate to acquire transparent flexible paper gas sensors. Furthermore, the fabricated ZnO/rGO paper-based gas sensors achieved ppb grade detection of ethanol at room temperature (25 °C) with high performance (favorable selectivity, high gas sensitivity, good stability, and rapid response/recovery time). Specially, the proposed paper-based gas sensors are not only transparent but are also better in breathability, biocompatibility, and biodegradability, which have great application prospects in handheld or wearable electronic devices for the detection of trace ethanol at room temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data are available from the corresponding author on reasonable request.

References

  1. D. Li, W.Y. Lai, Y.Z. Zhang, W. Huang, Printable transparent conductive films for flexible electronics. Adv. Mater. (2018). https://doi.org/10.1002/adma.201704738

    Article  PubMed  PubMed Central  Google Scholar 

  2. D. Tobjörk, R. Österbacka, Paper electronics. Adv. Mater. 23, 1935–1961 (2011)

    Article  PubMed  Google Scholar 

  3. J. Huang, H. Zhu, Y. Chen, C. Preston, K. Rohrbach, J. Cumings, L. Hu, Highly transparent and flexible nanopaper transistors. ACS Nano. 7, 2106–2113 (2013)

    Article  CAS  PubMed  Google Scholar 

  4. T.Q. Trung, S. Ramasundaram, B.U. Hwang, N.E. Lee, An all-elastomeric transparent and stretchable temperature sensor for body-attachable wearable electronics. Adv. Mater. 28, 502–509 (2016)

    Article  CAS  PubMed  Google Scholar 

  5. E. Modaresinezhad, S. Darbari, Realization of a room-temperature/self-powered humidity sensor, based on ZnO nanosheets. Sens. Actuators B Chem. 237, 358–366 (2016)

    Article  CAS  Google Scholar 

  6. L. Zhu, Y. Li, W. Zeng, Hydrothermal synthesis of hierarchical flower-like ZnO nanostructure and its enhanced ethanol gas-sensing properties. Appl. Surf. Sci. 427, 281–287 (2018)

    Article  ADS  CAS  Google Scholar 

  7. L. Wang, Y. Kang, X. Liu, S. Zhang, W. Huang, S. Wang, ZnO nanorod gas sensor for ethanol detection. Sens. Actuators B Chem. 162, 237–243 (2012)

    Article  CAS  Google Scholar 

  8. X. Li, W. Wei, S. Wang, L. Kuai, B. Geng, Single-crystalline α-Fe2O3 oblique nanoparallelepipeds: high-yield synthesis, growth mechanism and structure enhanced gas-sensing properties. Nanoscale. 3, 718–724 (2011)

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Q. Wang, X. Kou, C. Liu, L. Zhao, T. Lin, F. Liu, X. Yang, J. Lin, G. Lu, Hydrothermal synthesis of hierarchical CoO/SnO2 nanostructures for ethanol gas sensor. J. Colloid Interface Sci. 513, 760–766 (2018)

    Article  ADS  CAS  PubMed  Google Scholar 

  10. M. Weber, J.-Y. Kim, J.-H. Lee, J.-H. Kim, I. Iatsunskyi, E. Coy, P. MIELE, M. Bechelany, S.S. Kim, Highly efficient hydrogen sensors based on pd nanoparticles supported on boron nitride coated ZnO nanowires. J. Mater. Chem. A 7, 8107–8116 (2019)

    Article  CAS  Google Scholar 

  11. R. Kumar, O. Al-Dossary, G. Kumar, A. Umar, Zinc oxide nanostructures for NO2 gas-sensor applications: a review. Nano-Micro Lett. 7, 97–120 (2015)

    Article  Google Scholar 

  12. Y.V. Kaneti, Z. Zhang, J. Yue, Q.M.D. Zakaria, C. Chen, X. Jiang, A. Yu, Crystal plane-dependent gas-sensing properties of zinc oxide nanostructures: experimental and theoretical studies. Phys. Chem. Chem. Phys. 16, 11471–11480 (2014)

    Article  CAS  PubMed  Google Scholar 

  13. D. Su, H. Fu, X. Jiang, G. Wang, ZnO nanocrystals with a high percentage of exposed {4 2̄ 2̄ 3̄} reactive facets for enhanced gas sensing performance. Sens. Actuators B Chem. 186, 286–292 (2013)

    Article  CAS  Google Scholar 

  14. Y.V. Kaneti, J. Yue, X. Jiang, A. Yu, Controllable synthesis of ZnO nanoflakes with exposed (1010) for enhanced gas sensing performance. J. Phys. Chem. C 117, 13153–13162 (2013)

    Article  CAS  Google Scholar 

  15. R. Yoo, S. Cho, M.J. Song, W. Lee, Highly sensitive gas sensor based on Al-doped ZnO nanoparticles for detection of dimethyl methylphosphonate as a chemical warfare agent simulant. Sens. Actuators B Chem. 221, 217–223 (2015)

    Article  CAS  Google Scholar 

  16. H.S. Woo, C.H. Kwak, J.H. Chung, J.H. Lee, Highly selective and sensitive xylene sensors using Ni-doped branched ZnO nanowire networks. Sens. Actuators B Chem. 216, 358–366 (2015)

    Article  CAS  Google Scholar 

  17. C.M. Chang, M.H. Hon, I.C. Leu, Outstanding H2 sensing performance of pd nanoparticle-decorated ZnO nanorod arrays and the temperature-dependent sensing mechanisms. ACS Appl. Mater. Interfaces. 5, 135–143 (2013)

    Article  CAS  PubMed  Google Scholar 

  18. Z. Zhang, X. Zou, L. Xu, L. Liao, W. Liu, J. Ho, X. Xiao, C. Jiang, J. Li, Hydrogen gas sensor based on metal oxide nanoparticles decorated graphene transistor. Nanoscale. 7, 10078–10084 (2015)

    Article  ADS  CAS  PubMed  Google Scholar 

  19. N.D. Hoa, N. Van Quy, L. Wei, M. An, H. Song, Y. Kang, Y. Cho, D. Kim, One-dimensional tin-oxide-coated single-wall carbon nanotubes for gas sensor applications. J. Korean Phys. Soc. 54, 1893–1896 (2009)

    Article  ADS  Google Scholar 

  20. G. Lu, L.E. Ocola, J. Chen, Room-temperature gas sensing based on electron transfer between discrete tin oxide nanocrystals and multiwalled carbon nanotubes. Adv. Mater. 21, 2487–2491 (2009)

    Article  CAS  Google Scholar 

  21. B.A. Albiss, W.A. Sakhaneh, I. Jumah, I.M. Obaidat, NO2 gas sensing properties of ZnO/single-wall carbon nanotube composites. IEEE Sens. J. 10, 1807–1812 (2010)

    Article  ADS  CAS  Google Scholar 

  22. Y.-M. Lin, P. Avouris, Strong suppression of electrical noise in bilayer graphene nanodevices. Nano Lett. 8, 2119–2125 (2008)

    Article  ADS  CAS  PubMed  Google Scholar 

  23. G. Ning, Z. Fan, G. Wang, J. Gao, W. Qian, F. Wei, Gram-scale synthesis of nanomesh graphene with high surface area and its application in supercapacitor electrodes. Chem. Commun. 47, 5976 (2011)

    Article  CAS  Google Scholar 

  24. H. Moussa, E. Girot, K. Mozet, H. Alem, G. Medjahdi, R. Schneider, ZnO rods/reduced graphene oxide composites prepared via a solvothermal reaction for efficient sunlight-driven photocatalysis. Appl. Catal. B Environ. 185, 11–21 (2016)

    Article  CAS  Google Scholar 

  25. Y.V. Kaneti, X. Zhang, M. Liu, D. Yu, Y. Yuan, L. Aldous, X. Jiang, Experimental and theoretical studies of gold nanoparticle decorated zinc oxide nanoflakes with exposed {1 0 1 0} facets for butylamine sensing. Sens. Actuators B Chem. 230, 581–591 (2016)

    Article  CAS  Google Scholar 

  26. R. Aepuru, H.S. Panda, Electric-potential-driven pressure-sensing observation in new hollow radial ZnO and their heterostructure with carbon. J. Phys. Chem. C 120, 4813–4823 (2016)

    Article  CAS  Google Scholar 

  27. X. Geng, J. You, J. Wang, C. Zhang, Visible light assisted nitrogen dioxide sensing using tungsten oxide-graphene oxide nanocomposite sensors. Mater. Chem. Phys. 191, 114–120 (2017)

    Article  CAS  Google Scholar 

  28. C. Wang, J. Zhu, S. Liang, H. Bi, Q. Han, X. Liu, X. Wang, Reduced graphene oxide decorated with CuO–ZnO hetero-junctions: towards high selective gas-sensing property to acetone. J. Mater. Chem. A 2, 18635–18643 (2014)

    Article  CAS  Google Scholar 

  29. L. Guo, Z. Yang, Y. Li, B. Zu, X. Dou, Sensitive, real-time and anti-interfering detection of nitro-explosive vapors realized by ZnO/rGO core/shell micro-schottky junction. Sens. Actuators B Chem. 239, 286–294 (2017)

    Article  CAS  Google Scholar 

  30. Z.-L. Cheng, Y.-Y. Liu, B.-C. Cao, Two-dimensional layered structure-templated synthesis of graphene nanosheets using CoAl-LDH under low carbonization temperature. Mater. Lett. 175, 215–218 (2016)

    Article  CAS  Google Scholar 

  31. C. Zhang, X. Geng, H. Liao, C.-J. Li, M. Debliquy, Room-temperature nitrogen-dioxide sensors based on ZnO1–x coatings deposited by solution precursor plasma spray. Sens. Actuators B Chem. 242, 102–111 (2017)

    Article  CAS  Google Scholar 

  32. X. Geng, C. Zhang, Y. Luo, M. Debliquy, Preparation and characterization of CuxO1–y@ZnO1–α nanocomposites for enhanced room-temperature NO2 sensing applications. Appl. Surf. Sci. 401, 248–255 (2017)

    Article  ADS  CAS  Google Scholar 

  33. S.-J. Choi, W.-H. Ryu, S.-J. Kim, H.-J. Cho, I.-D. Kim, Bi-functional co-sensitization of graphene oxide sheets and ir nanoparticles on p-type Co3O4 nanofibers for selective acetone detection. J. Mater. Chem. B 2, 7160–7167 (2014)

    Article  CAS  PubMed  Google Scholar 

  34. Y.V. Kaneti, J. Moriceau, M. Liu, Y. Yuan, Q. Zakaria, X. Jiang, A. Yu, Hydrothermal synthesis of ternary α-Fe2O3-ZnO-Au nanocomposites with high gas-sensing performance. Sens. Actuators B Chem. 209, 889–897 (2015)

    Article  CAS  Google Scholar 

  35. Y. Yang, T. Liu, Fabrication and characterization of graphene oxide/zinc oxide nanorods hybrid. Appl. Surf. Sci. 257, 8950–8954 (2011)

    Article  ADS  CAS  Google Scholar 

  36. H. Zhu, Z. Fang, C. Preston, Y. Li, L. Hu, Transparent paper: fabrications, properties, and device applications. Energy Environ. Sci. 7(1), 269–287 (2014)

    Article  CAS  Google Scholar 

  37. N. Chen, X. Li, X. Wang, J. Yu, J. Wang, Z. Tang, S.A. Akbar, Enhanced room temperature sensing of Co3O4-intercalated reduced graphene oxide based gas sensors. Sens. Actuators B Chem. 188, 902–908 (2013)

    Article  CAS  Google Scholar 

  38. S. Mao, S. Cui, G. Lu, K. Yu, Z. Wen, J. Chen, Tuning gas-sensing properties of reduced graphene oxide using tin oxide nanocrystals. J. Mater. Chem. 22, 11009–11013 (2012)

    Article  CAS  Google Scholar 

  39. X. Li, Y. Zhao, X. Wang, J. Wang, A.M. Gaskov, S.A. Akbar, Reduced graphene oxide (rGO) decorated TiO2 microspheres for selective room-temperature gas sensors. Sens. Actuators B Chem. 230, 330–336 (2016)

    Article  CAS  Google Scholar 

  40. W. Guo, T. Liu, H. Zhang, R. Sun, Y. Chen, W. Zeng, Z. Wang, Gas-sensing performance enhancement in ZnO nanostructures by hierarchical morphology. Sens. Actuators B Chem. 166, 492–499 (2012)

    Article  Google Scholar 

  41. A.S.M. Iftekhar Uddin, D.T. Phan, G.S. Chung, Low temperature acetylene gas sensor based on Ag nanoparticles-loaded ZnO-reduced graphene oxide hybrid. Sens. Actuators B Chem. 207, 362–369 (2015)

    Article  CAS  Google Scholar 

  42. N.G. Shimpi, S. Jain, N. Karmakar, A. Shah, D.C. Kothari, S. Mishra, Synthesis of ZnO nanopencils using wet chemical method and its investigation as LPG sensor. Appl. Surf. Sci. 390, 17–24 (2016)

    Article  ADS  CAS  Google Scholar 

  43. Y. Zhang, T. Liu, S. Zhao, X. Kuang, S. Hussain, L. Lin, W. Zeng, X. Peng, Z. Wang, Hydrothermal synthesis of ZnO microcakes assembled by octahedrons and their gas-sensing property. J. Mater. Sci. Mater. Electron. 26, 9529–9534 (2015)

    Article  CAS  Google Scholar 

  44. R. Zhou, J. Li, H. Jiang, H. Li, Y. Wang, D. Briand, M. Camara, G. Zhou, N.F. de Rooij, Highly transparent humidity sensor with thin cellulose acetate butyrate and hydrophobic AF1600X vapor permeating layers fabricated by screen printing. Sens. Actuators B Chem. 281, 212–220 (2019)

    Article  CAS  Google Scholar 

  45. J.S. Jang, S. Qiao, S.J. Choi, G. Jha, A.F. Ogata, W.T. Koo, D.H. Kim, I.D. Kim, R.M. Penner, Hollow Pd-Ag composite nanowires for fast responding and transparent hydrogen sensors. ACS Appl. Mater. Interfaces. 9, 39464–39474 (2017)

    Article  CAS  PubMed  Google Scholar 

  46. Z. Wen, S. Song, C. Wang, F. Qu, T. Thomas, T. Hu, P. Wang, M. Yang, Large-scale synthesis of dual-emitting-based visualization sensing paper for humidity and ethanol detection. Sens. Actuators B Chem. 282, 9–15 (2019)

    Article  CAS  Google Scholar 

  47. N.T.A. Thu, N.D. Cuong, L.C. Nguyen, D.Q. Khieu, P.C. Nam, N. Van Toan, C.M. Hung, N. Van Hieu, Fe2O3 nanoporous network fabricated from Fe3O4/reduced graphene oxide for high-performance ethanol gas sensor. Sens. Actuators B Chem. 255, 3275–3283 (2018)

    Article  Google Scholar 

  48. X. Yang, H. Li, T. Li, Z. Li, W. Wu, C. Zhou, P. Sun, F. Liu, X. Yan, Y. Gao, X. Liang, G. Lu, Highly efficient ethanol gas sensor based on hierarchical SnO2/Zn2SnO4 porous spheres. Sens. Actuators B Chem. 282, 339–346 (2019)

    Article  CAS  Google Scholar 

  49. S. Yan, Q. Wu, A novel structure for enhancing the sensitivity of gas sensors α-Fe2O3 nanoropes containing a large amount of grain boundaries and their excellent ethanol sensing performance. J. Mater. Chem. A 3, 5982–5990 (2015)

    Article  ADS  CAS  Google Scholar 

  50. D. Maity, K. Rajavel, R.T.R. Kumar, Polyvinyl alcohol wrapped multiwall carbon nanotube (MWCNTs) network on fabrics for wearable room temperature ethanol sensor. Sens. Actuators B Chem. 261, 297–306 (2018)

    Article  CAS  Google Scholar 

Download references

Funding

We gratefully acknowledge the financial support of GDAS’ Project of Science and Technology Development (2021GDASYL-20210103032), The Science and Technology Program of Guangzhou (202102021028), National Key Research and Development Program of China (2022YFF0607201), and National Natural Science Foundation of Guangdong Province, China (2023A1515011422).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by HL, LP, DL, and WS. The first draft of the manuscript was written by HL and all authors commented on the previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Wenhao Shen.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Research involving human and animal participants

Research does not involve Human participants or Animals.

Additional information

Publisher’s Note

Springer nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 498.3 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Peng, L., Li, D. et al. Fully printed ethanol transparent paper sensor based on ZnO/rGO nanocomposites. J Mater Sci: Mater Electron 35, 359 (2024). https://doi.org/10.1007/s10854-024-12083-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12083-9

Navigation