Skip to main content
Log in

Synthesis and luminescence properties of intensely red-emitting Na5Y(WO4)4:Eu3+ phosphor

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The luminescence and chromaticity characteristics of Na5Y(WO4)4: Eu3+, a type of red-emitting phosphors, are examined. To make Na5Y(WO4)4: Eu3+ phosphor, a conventional solid-state reaction technique has been employed. The photoluminescence emission(PL) and photoluminescence excitation(PLE) spectra indicate that the absorption of light is mostly due to W → O charge transfer at 319 nm wavelength and Eu3+ transitions are obtained in the near-UV and visible areas, whereas red emissions are due to intra-configurational 4f-4f Eu3+ transitions. The CIE chromaticity coordinates for Na5Y(WO4)4: Eu3+ are (0.68, 0.31), which is the same as the commodity phosphor Y2O2S:Eu3+. Characteristic line emission is seen, with the strongest emission at 619 nm. The intensity of the luminescence is constrained by Eu3+ concentration due to energy transfer. Furthermore, Na5Y(WO4)4: Eu3+ phosphors are interesting prospects for w-LEDs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Data will be made available on reasonable request.

References

  1. Y.N. Ahn, K.D. Kim, G. Anoop, G.S. Kim, J.S. Yoo, Design of highly efficient phosphor-converted white light-emitting diodes with color rendering indices (R1–R15)≥ 95 for artificial lighting. Sci. Rep. 9(1), 1–10 (2019). https://doi.org/10.1038/s41598-019-53269-0

    Article  CAS  Google Scholar 

  2. J. Li, J. Yan, D. Wen, W.U. Khan, J. Shi, M. Wu, P.A. Tanner, Advanced red phosphors for white light-emitting diodes. J. Mater. Chem. C 4(37), 8611–8623 (2016)

    Article  CAS  Google Scholar 

  3. Q. Zhou, L. Dolgov, A.M. Srivastava, L. Zhou, Z. Wang, J. Shi, M. Wu, Mn2+ and Mn4+ red phosphors: synthesis, luminescence and applications in WLEDs, a review. J. Mater. Chem. C 6(11), 2652–2671 (2018). https://doi.org/10.1039/C8TC00251G

    Article  CAS  Google Scholar 

  4. X. Huang, S. Wang, B. Li, Q. Sun, H. Guo, High-brightness and high-color purity red-emitting Ca3Lu(AlO)3(BO3)4: Eu3+ phosphors with internal quantum efficiency close to unity for near-ultraviolet-based white-light-emitting diodes. Opt. Lett. 43(6), 1307–1310 (2018). https://doi.org/10.1364/OL.43.001307

    Article  ADS  CAS  PubMed  Google Scholar 

  5. X. Huang, J. Liang, S. Rtimi, B. Devakumar, Z. Zhang, Ultra-high color rendering warm-white light-emitting diodes based on an efficient green-emitting garnet phosphor for solid-state lighting. Chem. Eng. J. 405, 126950 (2021). https://doi.org/10.1016/j.cej.2020.126950

    Article  CAS  Google Scholar 

  6. E.F. Schubert, J.K. Kim, Solid-state light sources getting smart. Science 308(5726), 1274–1278 (2005). https://doi.org/10.1126/science.1108712

    Article  ADS  CAS  PubMed  Google Scholar 

  7. C. Feldmann, T. Justel, C.R. Ronda, P.J. Schmidt, Tripolyphosphate as precursor for REPO (4): Eu3+(RE= Y, La, Gd) by a polymeric method. Adv. Funct. Mater. 13, 511–516 (2003)

    Article  CAS  Google Scholar 

  8. S. Neeraj, N. Kijima, A.K. Cheetham, Novel red phosphors for solid-state lighting: the system NaM(WO4)2–x(MoO4)x:Eu3+ (M=Gd, Y, Bi). Chem. Phys. Lett. 387(1–3), 2–6 (2004). https://doi.org/10.1016/j.cplett.2003.12.130

    Article  ADS  CAS  Google Scholar 

  9. A. A. Kaminskii, P. V. Klevtsov, L. Li, & A. A. Pavlyuk, Stimulated emission from KY (WO4)2:Nd3+ crystal laser, physica status solidi(a), 5(2), (1971) K79-K81, https://doi.org/10.1016/j.optmat.2021.111451

  10. A.A. Kaminskii, Laser crystals: their physics and properties (Springer, Berlin, Heidelberg, New York, 1981)

    Book  Google Scholar 

  11. M.A. Elkarim, M.M. Elsherbini, H.M. AbdelKader, M.H. Aly, Exploring the effect of LED nonlinearity on the performance of layered ACO-OFDM. Appl. Opt. 59, 7343–7351 (2020). https://doi.org/10.1364/AO.397559

    Article  ADS  Google Scholar 

  12. F. Brusola, I. Tortajada, I. Lengua, B. Jordá, G. Peris-Fajarnés, Parametric effects by using the strip-pair comparison method around red CIE color center. Opt. Express 28, 19966–19977 (2020). https://doi.org/10.1364/OE.395291

    Article  ADS  PubMed  Google Scholar 

  13. Y. Zhao, X. Wang, Y. Zhang, Y. Li, X. Yao, Winning wide-temperature-range and high-sensitive thermometry by a multichannel strategy of dual-lanthanides in the new tungstate phosphors. J. Alloy. Compd. 834, 154998 (2020). https://doi.org/10.1016/j.jallcom.2020.154998

    Article  CAS  Google Scholar 

  14. J. Bin, H. Liu, L. Mei, L. Liang, H. Gao, H. Li, L. Liao, Multi-color luminescence evolution and efficient energy transfer of scheelite-type LiCaGd(WO4)3:Ln3+(Ln=Eu, Dy, Tb) phosphors. Ceram. Int. 45, 1837–1845 (2019). https://doi.org/10.1016/j.ceramint.2018.10.074

    Article  CAS  Google Scholar 

  15. S. Long, J. Hou, G. Zhang, F. Huang, Y. Zeng, High quantum efficiency red-emission tungstate based phosphor Sr(La1−xEux)2Mg2W2O12 for WLEDs application. Ceram. Int. 39, 6013–6017 (2013). https://doi.org/10.1016/j.ceramint.2013.01.013

    Article  CAS  Google Scholar 

  16. R.V. Yadav, A.K. Singh, A. Bahadur, T.P. Yadav, R.S. Yadav, S.B. Rai, Effect of Li+ on frequency up-conversion and intrinsic optical bi-stability of Ho3+/Yb3+ co-doped gadolinium tungstate phosphor. J. Phys. Chem. Solids 119, 138–146 (2018). https://doi.org/10.1016/j.jpcs.2018.03.041

    Article  ADS  CAS  Google Scholar 

  17. F. Yang, C. Tu, J. Li, G. Jia, H. Wang, Y. Wei, Z. You, Z. Zhu, Y. Wang, X. Lu, Growth and optical property of ZnWO4: Er3+ crystal. J. Lumin. 126, 623–628 (2007). https://doi.org/10.1016/j.jlumin.2006.10.015

    Article  CAS  Google Scholar 

  18. X. Chai, J. Li, X. Wang, Y. Li, X. Yao, Color-tunable up-conversion photoluminescence and highly performed optical temperature sensing in Er3+/Yb3+ co-doped ZnWO4. Opt. Express 24, 22438–22447 (2016). https://doi.org/10.1364/OE.24.022438

    Article  ADS  CAS  PubMed  Google Scholar 

  19. F.M. Emen, R. Altinkaya, Luminescence and thermoluminescence properties of Sr3WO6: Eu3+ phosphor. J. Lumin. 134, 618–621 (2013). https://doi.org/10.1016/j.jlumin.2012.07.020

    Article  CAS  Google Scholar 

  20. Y.P. Peng, X. Yuan, J. Zhang, L. Zhang, The effect of La2O3 in Tm3+-doped germanate-tellurite glasses for ~2μm emission. Sci. Rep. 4, 5256 (2014). https://doi.org/10.1038/srep05256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. A.A. Blistanov, B.I. Zadneprovskii, M.A. Ivanov, V.V. Kochurikhin, V.S. Petralov, I.O. Yakimova, Crystallogr. Rep. 50, 284 (2005)

    Article  ADS  CAS  Google Scholar 

  22. S. Kshetrapal, N.S. Ugemuge, K. Sharma, R. Nafdey, I.M. Nagpure, S.V. Moharil, Host sensitization of luminescence of lanthanide activators in NaBi(WO4)2. Radiat. Eff. Defects Solids (2023). https://doi.org/10.1080/10420150.2023.2240935

    Article  Google Scholar 

  23. G. Blasse, A. Bril, On the Eu3+ fluorescence in mixed metal oxides. III. Energy transfer in Eu3+-activated tungstates and molybdates of the type Ln2WO6 and Ln2MoO6. J. Chem. Phys. 45(7), 2350–2355 (1966). https://doi.org/10.1063/1.1727945

    Article  ADS  CAS  Google Scholar 

  24. H.J. Borchardt, Rare-earth tungstates and 1: 1 oxy-tungstates. J. Chem. Phys. 39(3), 504–511 (1963). https://doi.org/10.1063/1.1734285

    Article  ADS  CAS  Google Scholar 

  25. A. Pandey, V.K. Rai, V. Kumar, H.C. Swart, Upconversion based temperature sensing ability of Er3+-Yb3+codoped SrWO4: An optical heating phosphor. Sens, Actuators B Chem. 209, 352–358 (2015). https://doi.org/10.1016/j.snb.2014.11.126

    Article  CAS  Google Scholar 

  26. W. Xu, X. Gao, L. Zheng, P. Wang, Z. Zhang, W. Cao, Optical thermometry through green upconversion emissions in Er3+/Yb3+-codoped CaWO4 phosphor. Appl. Phys. Express 5(7), 072201 (2012). https://doi.org/10.1143/APEX.5.072201

    Article  ADS  CAS  Google Scholar 

  27. X. Chai, J. Li, Y. Zhang, X. Wang, Y. Li, X. Yao, Bright dual-mode green emission and temperature sensing properties in Er3+/Yb3+ co-doped MgWO4 phosphor. RSC Adv. 6, 64072–64078 (2016). https://doi.org/10.1039/C6RA09656E

    Article  ADS  CAS  Google Scholar 

  28. C. Mi, Highly sensitive optical thermometry based on the upconversion fluorescence from Yb3+/Er3+codoped La2(WO4)3:Yb3+, Er3+ phosphor, in International Conference on Optical Instruments and Technology, 9044 (1), (2013), https://doi.org/10.1117/12.2036247

  29. Matthias Hämmer, Oliver Janka, Judith Bönnighausen, Steffen Klenner, b Rainer Pöttgen and Henning A. Höppe, On the phosphors Na5M(WO4)4 (M = Y, La–Nd, Sm–Lu, Bi) – crystal structures, thermal decomposition, and optical and magnetic properties, Dalton Trans. 49, 8209–8225 (2020) doi https://doi.org/10.1039/D0DT00782J

  30. C. Gayner, Improved electrical conductivity and thermoelectric performance of ZnO by doping with NaCl and CdO. Chem. Eng. J. 413, 128149 (2021)

    Article  CAS  Google Scholar 

  31. K. Momma, F. Izumi, VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44, 1272–1276 (2011). https://doi.org/10.1107/S0021889811038970

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

Crystal structure showing presence of all elements of compound are prepared using open-source Vesta software [31]. We are obliged to the copyright owners of the vesta software for permitting free of cost use. Assistance in obtaining XRD pattern provided by Shri Shivaji Science College, Amaravati, India is gratefully acknowledged.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

AP—Data collection, Writing-Original draft, Investigation, Visualization. Dr. NU—Conceptualization, editing, analysis and discussion. Dr. AM—Conceptualization, editing, analysis and discussion. Dr. CG—Conceptualization, editing, analysis and discussion. Prof. SM—Conceptualization, editing, analysis and discussion. All authors have directly participated in planning and agree to publish this manuscript.

Corresponding authors

Correspondence to Ashvini Pusdekar or N. S. Ugemuge.

Ethics declarations

Conflict of interests

There is no conflict of interests as stated by authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pusdekar, A., Ugemuge, N.S., Mistry, A.A. et al. Synthesis and luminescence properties of intensely red-emitting Na5Y(WO4)4:Eu3+ phosphor. J Mater Sci: Mater Electron 35, 336 (2024). https://doi.org/10.1007/s10854-024-12053-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12053-1

Navigation