Skip to main content
Log in

Synthesis and characterization of structural, magnetic, and microwave properties of Ba0.5Sr0.5Fe12O19/Ni0.5Mn0.5Fe2O4/polypyrrole nanocomposite thin films

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Today, electromagnetic pollution is one of the most important factors that can endanger human health and have a destructive effect on electrical devices. The use of conductive composite layers including magnetic nanoparticles can play an important role in absorbing electromagnetic waves and eliminate electromagnetic pollution. In this research Ba0.5Sr0.5Fe12O19 and Ni0.5Mn0.5Fe2O4 nanoparticles were synthesized via the microwave radiation method and using lemon juice as a surfactant. Then different percentages of Ba0.5Sr0.5Fe12O19 and Ni0.5Mn0.5Fe2O4 nanoparticles are electrodeposited as a nanocomposite in the form of a thin layer. The structure, crystalline size, and strain of nanoparticles were investigated via X-ray diffraction. The morphology and shape of nanoparticles were studied by field emission scanning electron microscope. The kinetic roughening of nanocomposite thin films was studied using atomic force microscope. Magnetic hysteresis loop of nanoparticles and nanocomposite thin films curved via vibration sample magnetometer. The reflection loss of the samples were measured via vector network analyses. The purpose of this research is to find the appropriate percentage of the composition of Ba0.5Sr0.5Fe12O19 and Ni0.5Mn0.5Fe2O4 nanoparticles that has the largest range of absorption of electromagnetic waves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. S. Ramanavicius, A. Ramanavicius, Conducting polymers in the design of biosensors and biofuel cells. Polymers 13(1), 49 (2021)

    Article  CAS  Google Scholar 

  2. G. Prunet, F. Pawula, G. Fleury, E. Cloutet, A.J. Robinson, G. Hadziioannou, A. Pakdel, A review on conductive polymers and their hybrids for flexible and wearable thermoelectric applications. Mater. Today Phys. 18, 100402 (2021)

    Article  CAS  Google Scholar 

  3. X.X. Wang, G.F. Yu, J. Zhang, M. Yu, S. Ramakrishna, Y.Z. Long, Conductive polymer ultrafine fibers via electrospinning: preparation, physical properties and applications. Prog. Mater. Sci. 115, 100704 (2021)

    Article  CAS  Google Scholar 

  4. Y. Huang, S. Kormakov, X. He, X. Gao, X. Zheng, Y. Liu, J. Sun, D. Wu, Conductive polymer composites from renewable resources: an overview of preparation, properties, and applications. Polymers 11(2), 187 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  5. K. Namsheer, C.S. Rout, Conducting polymers: a comprehensive review on recent advances in synthesis, properties and applications. RSC Adv. 11, 5659–5697 (2021)

    Article  Google Scholar 

  6. X. Guo, A. Facchetti, The journey of conducting polymers from discovery to application. Nat. Mater. 19, 922–928 (2020)

    Article  ADS  CAS  PubMed  Google Scholar 

  7. S. Sardana, A. Gupta, K. Singh, A.S. Maan, A. Ohlan, Conducting polymer hydrogel based electrode materials for supercapacitor applications. J. Energy Storage. 45, 103510 (2022)

    Article  Google Scholar 

  8. J. Gao, L. Wang, Z. Guo, B. Li, H. Wang, J. Luo, X. Huang, H. Xue, Flexible, superhydrophobic, and electrically conductive polymer nanofiber composite for multifunctional sensing applications. Chem. Eng. J. 381, 122778 (2020)

    Article  Google Scholar 

  9. Z. Heydariyan, R. Monsef, M. Salavati-Niasari, Insights into impacts of Co3O4–CeO2 nanocomposites on the electrochemical hydrogen storage performance of g-C3N4: pechini preparation, structural design and comparative study. J. Alloys Compd. 924, 166564 (2022)

    Article  CAS  Google Scholar 

  10. A. Panahi, R. Monsef, E.A. Dawi, A.S. Hussein, M. Salavati-Niasari, Green auto-combustion synthesis and characterization of TmVO4 nanostructures in the presence carbohydrate sugars and their application as visible-light photocatalyst. Sol. Energy. 258, 372–382 (2023)

    Article  ADS  CAS  Google Scholar 

  11. M. Salavati-Niasari, D. ghanbari, F. Davar, Shape selective hydrothermal synthesis of tin sulfide nanoflowers based on nanosheets in the presence of thioglycolic acid. J. Alloys Compd. 492, 570–575 (2010)

    Article  CAS  Google Scholar 

  12. R. Kumar, P. Raizada, T. Ahamad, S.M. Alshehri, Q.V. Le, T.S. Alomar, V.H. Nguyen, R. Selvasembian, S. Thakur, D.C. Nguyen, P. Singh, Polypyrrole-based nanomaterials: a novel strategy for reducing toxic chemicals and others related to environmental sustainability applications. Chemosphere. 303, 134993 (2022)

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Y. Xie, Electrochemical performance of transition metal-coordinated polypyrrole: a mini review. Chem. Record 19, 2370–2384 (2019)

    Article  CAS  Google Scholar 

  14. Y. Li, S. Yan, X. Jia, J. Wu, J. Yang, C. Zhao, S. Wang, H. Song, X. Yang, Uncovering the origin of full-spectrum visible-light-responsive polypyrrole supramolecular photocatalysts. Appl. Catal. B 287, 119926 (2021)

    Article  CAS  Google Scholar 

  15. M. Green, A.T.V. Tran, X. Chen, Maximizing the microwave absorption performance of polypyrrole by data-driven discovery. Compos. Sci. Technol. 199, 108332 (2020)

    Article  CAS  Google Scholar 

  16. R. Ezhil Vizhi, V. Harikrishnan, P. Saravanan, D. Rajan Babu, Influence of co-substitution on the structural and magnetic properties of nanocrystalline Ba0.5Sr0.5Fe12O19. J. Cryst. Growth. 452, 117–124 (2016)

    Article  ADS  CAS  Google Scholar 

  17. R. Monsef, M. Ghiyasiyan-Arani, M. Salavati-Niasari, Application of ultrasound-aided method for the synthesis of NdVO4 nano-photocatalyst and investigation of eliminate dye in contaminant water. Ultrason. Sonochem. 42, 201–211 (2018)

    Article  CAS  PubMed  Google Scholar 

  18. M. Amiri, K. Eskandari, M. Salavati-Niasari, Magnetically retrievable ferrite nanoparticles in the catalysis application. Adv. Colloid Interface Sci. 271, 101982 (2019)

    Article  CAS  PubMed  Google Scholar 

  19. M.A. Almessiere, Y. Slimani, A. Demir Korkmaz, A. Baykal, H. Albetran, T.A. Saleh, M. Sertkol, I. Ercan, A study on the spectral, microstructural, and magnetic properties of Eu–Nd double-substituted Ba0.5Sr0.5Fe12O19 hexaferrites synthesized by an ultrasonic-assisted approach. Ultrason. Sonochem. 62, 104847 (2020)

    Article  CAS  PubMed  Google Scholar 

  20. Q. Lian, X.F. Zheng, H. Yang, Potential applications of Ni0.5Mn0.5Fe2O4-chitosan nanoparticles as a drug delivery system. Russian J. Phys. Chem. 89, 1891–1895 (2015)

    Article  CAS  Google Scholar 

  21. G. Liu, Z. Sun, X. Shi, X. Wang, L. Shao, Y. Liang, X. Lu, J. Liu, Z. Guo, 2D-layer-structure Bi to Quasi-1D-Structure NiBi3: structural dimensionality reduction to superior sodium and potassium ion storage. Adv. Mater. 35, 2305551 (2023)

    Article  CAS  Google Scholar 

  22. Y. Liang, W. Ding, B. Yao, F. Zheng, A. Smirnova, Z. Gu, Mediating lithium plating/stripping by constructing 3D Au@Cu pentagonal pyramid array. Batteries 9, 279 (2023)

    Article  CAS  Google Scholar 

  23. S. Huang, Z. Li, Z. Liu, Q. Yan, B. Ma, D. Wang, F. Wei, Z. Chen, H. He, Surface enrichment of redox mediator for long-cyclable lithium–air batteries. Energy Fuels 37, 11465–11471 (2023)

    Article  CAS  Google Scholar 

  24. H. Chung, H. Bae, C. Kim, I. Rhee, Cube-shaped triethylene glycol-coated Ni–Mn Ferrite nanoparticles for use as T2 contrast agents in magnetic resonance imaging. J. Korean Phys. Soc. 74, 48–52 (2019)

    Article  ADS  CAS  Google Scholar 

  25. Y. Xie, X. Hong, Y. Gao, M. Li, J. Liu, J. Wang, J. Lu, Synthesis and characterization of La/Nd-doped barium-ferrite/polypyrrole nanocomposites. Synth. Met. 162, 677–681 (2012)

    Article  CAS  Google Scholar 

  26. N. Mir, M. Salavati-Niasari, Preparation of TiO2 nanoparticles by using tripodal tetraamine ligands as complexing agent via two-step sol–gel method and their application in dye-sensitized solar cells. Mater. Res. Bull. 48, 1660–1667 (2013)

    Article  CAS  Google Scholar 

  27. S. Zinatloo-Ajabshir, M. Baladi, M. Salavati-Niasari, Enhanced visible-light-driven photocatalytic performance for degradation of organic contaminants using PbWO4 nanostructure fabricated by a new, simple and green sonochemical approach. Ultrason. Sonochem. 72, 105420 (2021)

    Article  CAS  PubMed  Google Scholar 

  28. M. Amiri, M. Salavati-Niasari, A. Akbari, T. Gholami, Removal of malachite green (a toxic dye) from water by cobalt ferrite silica magnetic nanocomposite: herbal and green sol–gel autocombustion synthesis. Int. J. Hydrog. Energy 42, 24846–24860 (2017)

    Article  CAS  Google Scholar 

  29. P. Gairola, L.P. Purohit, S.P. Gairola, P. Bhardwaj, S. Kaushik, Enhanced electromagnetic absorption in ferrite and tantalum pentoxide based polypyrrole nanocomposite. Prog. Nat. Sci.: Mater. Int. 29, 170–176 (2019)

    Article  CAS  Google Scholar 

  30. N.N. Ali, Y. Atassi, A. Salloum, A. Malki, M. Jafarian, B. Almarjeh, Lightweight broadband microwave absorbers of core–shell (polypyrrole/NiZn ferrite) nanocomposites in the X-band: insights on interfacial polarization. J. Mater. Sci.: Mater. Electron. 30, 6876–6887 (2019)

    CAS  Google Scholar 

  31. G. Han, J. Yuan, G. Shi, F. Wei, Electrodeposition of polypyrrole/multiwalled carbon nanotube composite films. Thin Solid Films. 474, 64–69 (2005)

    Article  ADS  CAS  Google Scholar 

  32. M. Salavati-Niasari, M. Dadkhah, F. Davar, Pure cubic ZrO2 nanoparticles by thermolysis of a new precursor. Polyhedron. 28, 3005–3009 (2009)

    Article  CAS  Google Scholar 

  33. M. Sharifirad, A. Omrani, A. Ali Rostami, M. Khoshroo, Electrodeposition and characterization of polypyrrole films on copper. J. Electroanal. Chem. 645, 149–158 (2010)

    Article  CAS  Google Scholar 

  34. J.E. Nady, A. Shokry, M. Khalil, S. Ebrahim, A.M. Elshaer, M. Anas, One-step electrodeposition of a polypyrrole/NiO nanocomposite as a supercapacitor electrode. Sci. Rep. 12, 3611 (2022)

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  35. N. Janem, Z. Sadat Azizi, M.M. Tehranchi, Microwave absorption and magnetic properties of thin-film Fe3O4 @polypyrrole nanocomposites: the synthesis method effect. Synth. Met. 282, 116948 (2021)

    Article  CAS  Google Scholar 

  36. L. Zhang, J. Jia, H. Liang, G. Chen, Facile synthesis of adjustable high-entropy alloy/polypyrrole electromagnetic wave absorber. J. Mater. Sci.: Mater. Electron. 32, 26074–26085 (2021)

    CAS  Google Scholar 

  37. B. Dai, F. Dong, H. Wang, Y. Qu, J. Ding, Y. Ma, M. Ma, T. Li, Fabrication of CuS/Fe3O4@polypyrrole flower-like composites for excellent electromagnetic wave absorption. J. Colloid Interface Sci. 634, 481–494 (2023)

    Article  ADS  CAS  PubMed  Google Scholar 

  38. N. Velhal, N.D. Patil, G. Kulkarni, S.K. Shinde, N.J. Valekar, H.C. Barshilia, V. Puri, Electromagnetic shielding, magnetic and microwave absorbing properties of Polypyrrole/Ba0.6Sr0.4Fe12O19 composite synthesized via in-situ polymerization technique. J. Alloys Compd. 777, 627–637 (2019)

    Article  CAS  Google Scholar 

  39. S.T. Assar, H.F. Abosheiasha, E.H. El-Ghazzawy, Preparation and study of some physical properties of Co–Ni–Li ferrite/polypyrrole nanocomposites. J. Alloys Compd. 802, 553–561 (2019)

    Article  CAS  Google Scholar 

  40. S.H. Hosseini, A. Asadnia, Synthesis, characterization, andmicrowave-absorbing properties of polypyrrole/MnFe2O4 nanocomposite. J. Nanomater. (2012). https://doi.org/10.1155/2012/198973

    Article  Google Scholar 

  41. Y. Wang, Y. Huang, Q. Wang, Q. He, L. Chen, Preparation and electromagnetic properties of Polyaniline(polypyrrole)-BaFe12O19/Ni0.8Zn0.2Fe2O4ferrite nanocomposites. Appl. Surf. Sci. 259, 486–493 (2012)

    Article  ADS  CAS  Google Scholar 

  42. T. Patois, B. Lakard, S. Monney, X. Roizard, P. Fievet, Characterization of the surface properties of polypyrrole films: influence of electrodeposition parameters. Synth. Met. 161, 2498–2505 (2011)

    Article  CAS  Google Scholar 

  43. K. Hedayati, Synthesis and characterization of nickel zinc ferrite nanoparticles. J. Nanostruct. 5, 13–16 (2015)

    Google Scholar 

  44. L. Abbasi, K. Hedayati, D. Ghanbari, Magnetic properties and kinetic roughening study of prepared polyaniline: lead ferrite, cobalt ferrite and nickel ferrite nanocomposites electrodeposited thin films. J. Mater. Sci.: Mater. Electron. 32, 14477–14493 (2021)

    CAS  Google Scholar 

  45. K. Hedayati, G. Nabiyouni, Surface roughness analysis and magnetic property studies of nickel thin films electrodeposited onto rotating disc electrodes. Appl. Phys. A 116, 1605–1612 (2014)

    Article  ADS  CAS  Google Scholar 

  46. N. Gill, A.L. Sharma, V. Gupta, M. Tomar, O.P. Pandey, D.P. Singh, Enhanced microwave absorption and suppressed reflection of polypyrrole-cobalt ferrite-graphene nanocomposite in X-band. J. Alloys Compd. 797, 1190–1197 (2019)

    Article  CAS  Google Scholar 

Download references

Funding

The authors state no funding is involved.

Author information

Authors and Affiliations

Authors

Contributions

TH and KH Writing—original draft, GN and KH Writing—review & editing, TH, GN and KH carried out the experiment, fabricated the sample, are performed the calculations; GN supervised the project; KH advisor the project, TH prepared all figures. All authors reviewed the manuscript.

Corresponding authors

Correspondence to Gholamreza Nabiyouni or Kambiz Hedayati.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hosseinabad, T., Nabiyouni, G. & Hedayati, K. Synthesis and characterization of structural, magnetic, and microwave properties of Ba0.5Sr0.5Fe12O19/Ni0.5Mn0.5Fe2O4/polypyrrole nanocomposite thin films. J Mater Sci: Mater Electron 35, 156 (2024). https://doi.org/10.1007/s10854-024-11945-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-11945-6

Navigation