Skip to main content
Log in

Plasmonic Au nanoparticles enhanced photovoltaic characteristics of perovskite BiFeO3 nanostructures

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In the process of solar photovoltaic, ferroelectric semiconductors such as BiFeO3 are found to be new class of materials as an alternative to traditional semiconductors for more energy generations. The efficient chare transformation as well as the enhanced optical absorbance are the key factors for better performance of these ferroelectric semiconductors, which can be facilitated by depositing plasmonic Au nanoparticles on the surface of BiFeO3. As a result, the photoelectrochemical (PEC) and photovoltaic (PV) performance of BFO could be enhanced. We developed the BiFeO3 nanostructures via a facile approach and then we have deposited Au nanoparticles on the surfaces of the BiFeO3 nanoparticles. Electron microscopic images revealed the aggregation of 20–40 nm sized BiFeO3 nanoparticles and the spherical shaped Au nanoparticles of ~ 30 nm. In addition to a noticeable enhancement in the optical spectrum, the plasmonic effect could be seen in the absorbance spectra after the decoration of Au nanoparticles. In order to assess the enhanced photovoltaic and photoelectrochemical performance of the Au-decorated BFO nanostructures, a comparative examination of pristine BFO was performed. Studies on the time-dependent photocurrent density also confirmed the stability of treated photoelectrode materials using Au nanoparticles. This really raised the charge transfer efficiency by delivering better conductivity, which was investigated using Nyquist plot. The incident photon-to-current conversion efficiency [IPCE(%)] also confirmed the enhancement of photovoltaic by Au nanoparticles. The DSSC efficiency of produced Au-decorated BiFeO3 nanostructures is ~ 20% higher than the pristine BiFeO3-based cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3
Fig. 4
Fig.5
Fig. 6
Fig.7
Fig. 8

Similar content being viewed by others

Data availability

The datasets used and analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. P. Ilanchezhiyan, G. Mohan Kumar, C. Siva, H.D. Cho, D.J. Lee, T.W. Kang, D.Y. Kim, Ceram. Int. 48(19), 29332 (2022)

    Article  CAS  Google Scholar 

  2. H. Upadhyaya, S. Senthilarasu, M.H. Hsu, D. Kishore Kumar, Sol. Energy Mater. Sol. Cell. 119, 291 (2013)

    Article  CAS  Google Scholar 

  3. P.C. Choubey, A. Oudhia, R. Dewangan, Recent Res. Science Tech. 4, 8 (2012)

    Google Scholar 

  4. T. Naveen Kumar, M. Abdi-Jalebi, V. Gupta, H. Hu, M.I. Dar, G. Li, S. Satapathi, J. Mater. Chem. A 8, 21356 (2020)

    Article  Google Scholar 

  5. X. Rongming, J. Zhang, Y. Li, Y. Li, Small 14, 1801793 (2018)

    Article  Google Scholar 

  6. D. Mugdha, B. Butey, S.V. Moharil, J. Phys. Conf. Ser. 1913, 012053 (2021)

    Article  Google Scholar 

  7. A. Anupam, S.A. Siddiqui, A. Soni, G.D. Sharma, Sol. Energy 233, 378 (2022)

    Article  ADS  Google Scholar 

  8. N.S. Noorasid, F. Arith, A.N. Mustafa, M.A. Azam, S. Mahalingam, P. Chelvanathan, N. Amin, Optik 254, 168089 (2022)

    Article  CAS  ADS  Google Scholar 

  9. K.B. Bhojanaa, A. Soundarya Mary, K.S. Shalini Devi, N. Pavithra, A. Pandikumar, Solar RRL 6, 2100792 (2022)

    Article  CAS  Google Scholar 

  10. A. Alizadeh, M. Roudgar-Amoli, S.M. Bonyad-Shekalgourabi, Z. Shariatinia, M. Mahmoudi, F. Saadat, Renew. Sustain. Energy Rev. 157, 112047 (2022)

    Article  CAS  Google Scholar 

  11. O. MirKazem, R. Keshavarzi, M. Abdi-Jalebi, P. Gao, Sci. Rep. 12, 5367 (2022)

    Article  ADS  Google Scholar 

  12. A. Bin, Z. Fan, Z.J. Wong, Microsyst. Nanoeng. 8, 5 (2022)

    Article  ADS  Google Scholar 

  13. V.S. Manikandan, A.K. Palai, A. Ramadoss, S. Mohanty, M. Navaneethan, J. Mater. Sci.: Mater. Electron. 33, 8655 (2022)

    CAS  Google Scholar 

  14. V.S. Manikandan, A.K. Palai, S. Mohanty, S.K. Nayak, Ceramic. Inter. 44, 21314 (2018)

    Article  CAS  Google Scholar 

  15. H. Xiong, Y. Guo, X. Li, J. Liu, Chem. Eng. J. 396, 125302 (2020)

    Article  Google Scholar 

  16. O. Ceballos-Sanchez, A. Sanchez-Martinez, F.J. Flores-Ruiz, A.M. Huerta-Flores, L.M. Torres-Martínez, R. Ruelas, M. García-Guaderrama, J. Alloys Compd. 832, 154923 (2020)

    Article  CAS  Google Scholar 

  17. K. Vashisth, J.S.B. Balesh, S.P. Gairola, V. Verma, Adv. Mater. Lett. 9, 805 (2018)

    Article  CAS  Google Scholar 

  18. P.P. Gotipamul, K.D. Rajan, S. Khanna, M. Rathinam, C. Siva, J. Mater. Sci. Mater. Electron. 33, 8385 (2022)

    Article  CAS  Google Scholar 

  19. H.Y. Hong, S.Y. Gwon, S.O. Won, K. Park, J. Mater. Res. Tech. 19, 1883 (2022)

    Google Scholar 

  20. K. Woochul, K. Kawaguchi, N. Koshizaki, M. Sohma, T. Matsumoto, J. Appl. Phys. 93, 8032 (2003)

    Article  ADS  Google Scholar 

  21. J. Stoch, J. Gablankowska-Kukucz, Surf. Interf. Anal. 17, 165 (1991)

    Article  CAS  Google Scholar 

  22. C. Ying-Chieh, Y.W. Chen, J. Nanosci. Nanotech. 16, 9104 (2016)

    Article  Google Scholar 

  23. K.A. McDonnell, N. Wadnerkar, N.J. English, M. Rahman, D. Dowling, Chem. Phys. Lett. 572, 78 (2013)

    Article  CAS  ADS  Google Scholar 

  24. G.S. Lotey, N.K. Verma, Chem. Phys. Lett. 574, 71 (2013)

    Article  CAS  ADS  Google Scholar 

  25. B. Ramachandran, A. Dixit, R. Naik, G. Lawes, M.S.R. Rao, Phys. Rev. B 82, 012102 (2010)

    Article  ADS  Google Scholar 

  26. B. Susmita, S. Ghosh, S. Shyamal, C. Bhattacharya, R.N. Basu, Sol. Energy Mater. Sol. Cell. 194, 195 (2019)

    Article  Google Scholar 

  27. C. Siva, A. Vijay, G.M. Kumar, M. Alagiri, J. Thiruvadigal, M. Rathinam, Appl. Surf. Sci. 449, 631 (2018)

    Article  ADS  Google Scholar 

  28. P. Ilanchezhiyan, G. Mohan Kumar, C. Siva, H.D. Cho, S. Tamilselvan, S. Seal, T.W. Kang, D.Y. Kim, J. Mater. Res. Technol. 9, 12585 (2020)

    Article  CAS  Google Scholar 

  29. R. Maity, A.P. Sakhyaa, A. Dutta, T.P. Sinha, Mater. Chem. Phys. 223, 78 (2019)

    Article  CAS  Google Scholar 

  30. Q. Peng, J. Wang, Y.W. Wen, B. Shan, R. Chen, RSC Adv. 6, 26192 (2016)

    Article  CAS  ADS  Google Scholar 

  31. G. Mohan Kumar, P. Ilanchezhiyan, H.D. Cho, D.J. Lee, T.W. Kang, D.Y. Kim, Int. J. Energy Res. 44, 811 (2019)

    Article  Google Scholar 

  32. J. Mathew, T.S. Shyju, Top. Catal. 65, 1719 (2022)

    Article  CAS  Google Scholar 

  33. V.N. Kumar, I. Kaur, K. Kaur, G. Singh Lotey, Adv. Mater. Res. 856, 184 (2014)

    Google Scholar 

  34. D. Luchao, A. Furube, K. Yamamoto, K. Hara, R. Katoh, M. Tachiya, J. Phys. Chem. C 113, 6454 (2009)

    Article  Google Scholar 

  35. L. Matt, L.E. Greene, A. Radenovic, T. Kuykendall, J. Liphardt, P. Yang, J. Phys. Chem. B 110, 22652 (2006)

    Article  Google Scholar 

  36. M. Subas, O. Game, V. Dhas, K. Vijayamohanan, K.A. Bogle, N. Valanoor, S.B. Ogale, Sol. Energy 86, 1428 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Deputyship for Research and Innovation “Ministry of Education” in Saudi Arabia for funding this research work through project number (IFKSUDR_E175).

Funding

The authors extend their appreciation to the Deputyship for Research and Innovation “Ministry of Education” in Saudi Arabia for funding this research work through project number (IFKSUDR_E175).

Author information

Authors and Affiliations

Authors

Contributions

KMB, MFI—writing and experimentation. AI, SP—technical evaluation and inference.

Corresponding author

Correspondence to Saravanan Pandiaraj.

Ethics declarations

Competing interests

The authors declare that there is no conflict of interest.

Ethical approval

Not applicable.

Research involving human and animal participants

No human and/or animal studies have been executed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Batoo, K.M., Ijaz, M.F., Imran, A. et al. Plasmonic Au nanoparticles enhanced photovoltaic characteristics of perovskite BiFeO3 nanostructures. J Mater Sci: Mater Electron 35, 159 (2024). https://doi.org/10.1007/s10854-023-11902-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11902-9

Navigation