Skip to main content
Log in

Investigation to improve the printing accuracy of low-temperature paste based on rheological and optical measurement

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The low-temperature thick film paste serves as the fundamental material in the electronic printing industry. Currently there is a growing trend towards integration and miniaturization in electronic printing, making high-precision printing increasingly demanded. However, due to the process limitations of screen printing, how to further improve the printing accuracy at a low cost is still a problem to be solved. In this paper, a selection method of low-temperature paste additives was proposed, enabling self-shrinking during the drying process post-printing, thereby achieving enhanced printing accuracy without necessitating equipment modifications. The organic medium with good dispersibility and stable performance was obtained by mixing resin binder, solvent and additive. The constitutive fitting was used to understand its characteristics. The rheological properties of the low-temperature paste were analyzed to comprehend their behavior and structural characteristics under varying conditions, as well as validate their printing performance. Through the screen printing process, it was found that the width of the printed line after sintering decreased to only 80.8% of its original size after sintering. This study provides theoretical guidance for low-temperature electronic paste research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

The data that support the findings of this study are available upon reasonable request from the authors.

References

  1. M. Makrygianni, F. Zacharatos, K. Andritsos, I. Theodorakos, D. Reppas, N. Oikonomidis, C. Spandonidis, I. Zergioti, Materials 14, 3353 (2021)

    CAS  Google Scholar 

  2. Â.D.M. Silva, M.M. Silva, H. Figueiredo, I. Delgado, P.E. Lopes, M.C. Paiva, L. Hilliou, Materials 14, 7734 (2021)

    CAS  Google Scholar 

  3. L. Liu, Z. Shen, X. Zhang, H. Ma, J. Colloid Interface Sci. 582, 12–21 (2021)

    CAS  Google Scholar 

  4. C. Cano-Raya, Z.Z. Denchev, S.F. Cruz, J.C. Viana, Appl. Mater. Today 15, 416–430 (2019)

    Google Scholar 

  5. D.-H. Cho, O.E. Kwon, Y.-S. Park, B.G. Yu, J. Lee, J. Moon, H. Cho, H. Lee, N.S. Cho, Org. Electron. 50, 170–176 (2017)

    CAS  Google Scholar 

  6. T. Furukawa, M. Koden, IEICE Trans. Electron. 100, 949–954 (2017)

    Google Scholar 

  7. A. Kovalenko, M. Hrabal, Printable solar cells (Wiley, Hoboken, 2017), pp.163–202

    Google Scholar 

  8. Y. Sun, H. Xue, C. Yang, Y. Tian, S. Ning, S. Ma, H. Wang, Sol. Energy. Mater. Sol. Cells 253, 112214 (2023)

    CAS  Google Scholar 

  9. J. Hong, R. Xuan, H. Huang, Q. Geng, W. Wang, Sol. Energy 135, 70–76 (2016)

    CAS  Google Scholar 

  10. E. Siegenthaler, P. Wurtz, P. Bergamin, R. Groner, Displays 32, 268–273 (2011)

    Google Scholar 

  11. P. He, J. Cao, H. Ding, C. Liu, J. Neilson, Z. Li, I.A. Kinloch, B. Derby, ACS Appl. Mater. Interfaces. 11, 32225–32234 (2019)

    CAS  Google Scholar 

  12. W. Ma, D. Liang, Q. Qian, Q. Mo, S. Zhao, W. Cai, J. Chen, Z. Zang, eScience 3, 100089 (2023)

    Google Scholar 

  13. Q. Mo, Q. Qian, Y. Shi, W. Cai, S. Zhao, Z. Zang, Adv. Opt. Mater. 10, 2201509 (2022)

    CAS  Google Scholar 

  14. S. Zhao, Z. Jia, Y. Huang, Q. Qian, Q. Lin, Z. Zang, Adv. Funct. Mater. 33, 2305858 (2023)

    CAS  Google Scholar 

  15. B. Wang, Z. Jia, X. Yang, S. Lu, J. Zhao, Z. Sun, Q. Qian, Q. Lin, Z. Zang, Chem. Commun. 58, 13206–13209 (2022)

    CAS  Google Scholar 

  16. H. Hong, J. Hu, X. Yan, ACS Appl. Mater. Interfaces. 11, 27318–27326 (2019)

    CAS  Google Scholar 

  17. M.M.M. Carrijo, H. Lorenz, C.R. Rambo, P. Greil, N. Travitzky, Ceram. Int. 44, 8116–8124 (2018)

    CAS  Google Scholar 

  18. M. Ali, L. Lin, S. Faisal, I.A. Sahito, S.I. Ali, Pigm. Resin Technol. 48, 456–463 (2019)

    CAS  Google Scholar 

  19. X. Qi, H. Ha, B. Hwang, S. Lim, Appl. Sci. 10, 6983 (2020)

    CAS  Google Scholar 

  20. J.-S. Jiang, J.-E. Liang, H.-L. Yi, S.-H. Chen, C.-C. Hua, Mater. Chem. Phys. 176, 96–103 (2016)

    CAS  Google Scholar 

  21. R. Durairaj, S. Ramesh, S. Mallik, A. Seman, N. Ekere, Mater. Des. 30, 3812–3818 (2009)

    CAS  Google Scholar 

  22. C. Cui, T. Nie, B. Zhou, Y. Cai, G. Wang, J. Bai, H. Wang, S. Ma, Diam. Relat. Mater. 111, 108213 (2021)

    CAS  Google Scholar 

  23. K. Inukai, Y. Takahashi, K. Ri, W. Shin, Ceram. Int. 41, 5959–5966 (2015)

    CAS  Google Scholar 

  24. T.T.T. Can, T.C. Nguyen, W.-S. Choi, Adv. Eng. Mater. 22, 1901384 (2020)

    CAS  Google Scholar 

  25. Y. Wang, Y. Qiu, S.K. Ameri, H. Jang, Z. Dai, Y. Huang, N. Lu, NPJ Flex. Electron. 2, 6 (2018)

    Google Scholar 

  26. L. Wu, J. Qian, F. Zhang, J. Yu, Z. Wang, H. Guo, X. Chen, IEEE Trans. Power Electron. 37, 1234–1243 (2022)

    Google Scholar 

  27. Y.-C. Fang, Y.-C. Wang, F.-Y. Ouyang, J. Electron. Mater. 52, 792–800 (2023)

    CAS  Google Scholar 

  28. K.-Y. Shin, S.-H. Lee, J.H. Oh, J. Micromech. Microeng. 21, 045012 (2011)

    Google Scholar 

  29. M. Qiu, W. Du, S. Zhou, P. Cai, Y. Luo, X. Wang, R. Yang, J. Zhao, Prog. Polym. Sci. 142, 101688 (2023)

    CAS  Google Scholar 

  30. B.Y. Ahn, E.B. Duoss, M.J. Motala, X. Guo, S.-I. Park, Y. Xiong, J. Yoon, R.G. Nuzzo, J.A. Rogers, J.A. Lewis, Science 323, 1590–1593 (2009)

    CAS  Google Scholar 

  31. F. Tricot, C. Venet, D. Beneventi, D. Curtil, D. Chaussy, T.P. Vuong, J.E. Broquin, N. Reverdy-Bruas, RSC Adv. 8, 26036–26046 (2018)

    CAS  Google Scholar 

  32. H. Hong, J. Hu, X. Yan, Text. Res. J. 90, 1212–1223 (2019)

    Google Scholar 

  33. S. Wu, J. Zhang, Z. Wang, Y. Chen, G. Huang, Y. Liu, H. You, Sol. Energy Mater. Sol. Cells 259, 112452 (2023)

    CAS  Google Scholar 

  34. J. Yan, Nanomaterials-Basel 11, 927 (2021)

    CAS  Google Scholar 

  35. W. Guo, H. Zhang, X. Zhang, L. Liu, P. Peng, G. Zou, Y.N. Zhou, J. Alloy Compd. 690, 86–94 (2017)

    CAS  Google Scholar 

  36. C. Liu, Q. Fu, J. Zou, Y. Huang, X. Zeng, B. Cheng, J. Mater. Sci.: Mater. Electron 27, 6511–6516 (2016)

    CAS  Google Scholar 

  37. J. Liu, Y. Mou, Y. Peng, Q. Sun, M. Chen, Mater. Lett. 248, 78–81 (2019)

    CAS  Google Scholar 

  38. Z. Xu, X. Liu, J. Li, R. Sun, L. Liu, Materials 16, 2340 (2023)

    CAS  Google Scholar 

  39. H. Imamura, Y. Kamikoriyama, A. Muramatsu, K. Kanie, Sci. Rep. 11, 24268 (2021)

    CAS  Google Scholar 

  40. D. Chen, L. Zhao, H. Diao, W. Zhang, G. Wang, W. Wang, J. Alloy Compd. 618, 357–365 (2015)

    CAS  Google Scholar 

  41. Y. Zhang, R. Yao, X. Xu, W. Li, W. Wu, Q. Feng, M. Chen, J. Mater. Res. Technol. 26, 3604–3614 (2023)

    CAS  Google Scholar 

  42. H.-J. Butt, J. Liu, K. Koynov, B. Straub, C. Hinduja, I. Roismann, R. Berger, X. Li, D. Vollmer, W. Steffen, M. Kappl, Curr. Opin. Colloid Interface Sci. 59, 101574 (2022)

    CAS  Google Scholar 

  43. C. Semprebon, G. McHale, H. Kusumaatmaja, Soft Matter 13, 101–110 (2017)

    CAS  Google Scholar 

  44. J. Geens, B. Van der Bruggen, C. Vandecasteele, Chem. Eng. Sci. 59, 1161–1164 (2004)

    CAS  Google Scholar 

  45. A. Maestro, L.J. Bonales, H. Ritacco, R.G. Rubio, F. Ortega, Phys. Chem. Chem. Phys. 12, 14115–14120 (2010)

    CAS  Google Scholar 

  46. N. Ismail, R. Ismail, A. Jalar, G. Omar, E.M. Salleh, N. Kamil, I.A. Rahman, J. Mater. Sci. Mater. EL 29, 12910–12916 (2018)

    CAS  Google Scholar 

  47. D. Soares, H. Leitão, C.S. Lau, J.C. Teixeira, L. Ribas, R. Alves, S. Teixeira, M.F. Cerqueira, F. Macedo, J. Mater. Eng. Perform. 27, 5011–5017 (2018)

    CAS  Google Scholar 

  48. H. Song, X. Wang, W. Xie, Z. Di, F. Cheng, Constr. Build. Mater. 326, 126734 (2022)

    CAS  Google Scholar 

  49. S. Bilal, Appl. Nanosci. 13, 405–419 (2023)

    CAS  Google Scholar 

  50. S. Luo, X. Zhang, X. Huang, W. Xu, High. Temp. Mat. PR-ISR 33, 21–25 (2014)

    CAS  Google Scholar 

  51. J.-S. Jiang, J.-E. Liang, H.-L. Yi, S.-H. Chen, C.-C. Hua, J. Polym. Res. 22, 144 (2015)

    Google Scholar 

  52. R. Durairaj, S. Mallik, A. Seman, A. Marks, N.N. Ekere, J. Mater. Process. Tech. 209, 3923–3930 (2009)

    CAS  Google Scholar 

  53. S. Mallik, E.H.L. Chan, N. Ekere, J. Mater. Eng. Perform. 22, 1186–1193 (2013)

    CAS  Google Scholar 

  54. F. Esposito, U. Wolf, S. Baumgartner, J. Mol. Liq. 337, 115975 (2021)

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 52372224, 52072299), Major Project of Shaanxi Coal Joint Fund of Shaanxi Provincial Science and Technology Department (No. 2019JLZ-07), Natural Science Basic Research Plan of Shaanxi Province (No. 2019JM-592).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. HX: Data analysis and Writing. FZ: Investigation and Data Curation. YS: Visualization. SM: Supervision. HW: Project administration.

Corresponding authors

Correspondence to Shenghua H. Ma or Hui Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no confict of interest to this work. The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 0.2 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, H., Sun, Y., Zhang, H. et al. Investigation to improve the printing accuracy of low-temperature paste based on rheological and optical measurement. J Mater Sci: Mater Electron 35, 55 (2024). https://doi.org/10.1007/s10854-023-11859-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11859-9

Navigation