Skip to main content
Log in

Photocatalytic degradation of tetracycline hydrochloride by ZnO/TiO2 composite photocatalyst

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Semiconductor photocatalytic technology is widely used in the degradation of antibiotic pollutants due to its easy operation, low energy consumption, and no secondary pollution. In this study, ZnO/TiO2 composite photocatalysts with the different sturcture and the different content were constructed using layered double hydroxide as precursor. The structure and physicochemical properties of the photocatalysts were characterized by the different characterization technologyies, such as XRD, SEM, FT-IR, LRS, UV–vis DRS, N2 adsorption–desorption isotherm, XPS, UPS, EIS, and so on. The photocatalytic degradation performance and mechanism for tetracycline hydrochloride were studied. The results show that the light response performances of the as-prepared samples are improved by a calcination process. The surface active sites are increased and the transport and separation efficiency of photogenerated electrons and holes are improved. Among them, ZnO/TiO2-200 has the fastest degradation rate and the best catalytic activity, and its maximum apparent rate constant is 0.9576 × 10–3 L·mg−1·min−1. The analysis of photocatalytic mechanism and energy band structure shows that the main active substance of the system is ·O2, and the photocatalytic degradation process follows the type II heterojunction photocatalytic reaction mechanism. This study provides ideas for the design and construction of high-efficiency photocatalytic composites, and provides a reference for the photocatalytic degradation of other organic pollutants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. M. Kolář, Bacterial Infections, antimicrobial resistance and antibiotic therapy. Life 12, 468 (2022)

    Article  Google Scholar 

  2. E. Drwiega, S. Rab, S. Kandiah et al., Evaluation of antibiotic prophylaxis and postsurgery antibiotics for urological surgeries at an academic medical center. Infect. Control Hosp. Epidemiol. 41, s227–s227 (2020)

    Article  Google Scholar 

  3. M. Zalewska, A. Błażejewska, A. Czapko et al., Antibiotics and antibiotic resistance genes in animal manure—Consequences of its application in agriculture. Front. Microbiol. (2021). https://doi.org/10.3389/fmicb.2021.610656

    Article  Google Scholar 

  4. L. The, Food industry must act to safeguard the future of antibiotics. The Lancet. 390, 2216 (2017)

    Article  Google Scholar 

  5. S. Şahin, I. Akpinar, N. Sivri, An alternative material for an effective treatment technique proposal in the light of bibliometric profile of global scientific research on antibiotic resistance and Escherichia coli. Environ. Monit. Assess. 192, 714 (2020)

    Article  Google Scholar 

  6. S. Shurbaji, P.T. Huong, T.M. Altahtamouni. Review on the Visible Light Photocatalysis for the Decomposition of Ciprofloxacin, Norfloxacin, Tetracyclines, and Sulfonamides Antibiotics in Wastewater Catalysts [Online], 2021.

  7. R. Anjali, S. Shanthakumar, Insights on the current status of occurrence and removal of antibiotics in wastewater by advanced oxidation processes. J. Environ. Manage. 246, 51–62 (2019)

    Article  CAS  Google Scholar 

  8. W.S. Koe, J.W. Lee, W.C. Chong et al., An overview of photocatalytic degradation: photocatalysts, mechanisms, and development of photocatalytic membrane. Environ. Sci. Pollut. Res. 27, 2522–2565 (2020)

    Article  CAS  Google Scholar 

  9. P. Liu, Z. Wu, A.V. Abramova et al., Sonochemical processes for the degradation of antibiotics in aqueous solutions: a review. Ultrason. Sonochem. 74, 105566 (2021)

    Article  CAS  Google Scholar 

  10. J. Wang, R. Zhuan, Degradation of antibiotics by advanced oxidation processes: an overview. Sci. Total Environ. 701, 135023 (2020)

    Article  CAS  Google Scholar 

  11. Q. Yuan, S. Qu, R. Li et al., Degradation of antibiotics by electrochemical advanced oxidation processes (EAOPs): Performance, mechanisms, and perspectives. Sci. Total Environ. 856, 159092 (2023)

    Article  CAS  Google Scholar 

  12. Y. Jiang, J. Ran, K. Mao et al., Recent progress in Fenton/Fenton-like reactions for the removal of antibiotics in aqueous environments. Ecotoxicol. Environ. Saf. 236, 113464 (2022)

    Article  CAS  Google Scholar 

  13. O.S. Keen, K.G. Linden, Degradation of antibiotic activity during UV/H2O2 advanced oxidation and photolysis in wastewater effluent. Environ. Sci. Technol. 47, 13020–13030 (2013)

    Article  CAS  Google Scholar 

  14. O. Baaloudj, I. Assadi, N. Nasrallah et al., Simultaneous removal of antibiotics and inactivation of antibiotic-resistant bacteria by photocatalysis: a review. J. Water Process Eng. 42, 102089 (2021)

    Article  Google Scholar 

  15. X. Wang, M. Sayed, O. Ruzimuradov et al., A review of step-scheme photocatalysts. Appl. Mater. Today 29, 101609 (2022)

    Article  Google Scholar 

  16. A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37–38 (1972)

    Article  CAS  Google Scholar 

  17. B.J. Cha, S. Saqlain, H.O. Seo et al., Hydrophilic surface modification of TiO2 to produce a highly sustainable photocatalyst for outdoor air purification. Appl. Surf. Sci. 479, 31–38 (2019)

    Article  CAS  Google Scholar 

  18. E. Arcadipane, R. Sanz, M. Miritello et al., TiO2 nanowires on Ti thin film for water purification. Mater. Sci. Semicond. Process. 42, 24–27 (2016)

    Article  CAS  Google Scholar 

  19. M. Nozawa, K. Tanigawa, M. Hosomi et al., Removal and decomposition of malodorants by using titanium dioxide photocatalyst supported on fiber activated carbon. Water Sci. Technol. 44, 127–133 (2001)

    Article  CAS  Google Scholar 

  20. X. Li, J. Lv, D. Li et al., Rapid fabrication of TiO2@carboxymethyl cellulose coatings capable of shielding UV, antifog and delaying support aging. Carbohyd. Polym. 169, 398–405 (2017)

    Article  CAS  Google Scholar 

  21. T.O. Owolabi, K.O. Akande, S.O. Olatunji et al., Modeling energy band gap of doped TiO2 semiconductor using homogeneously hybridized support vector regression with gravitational search algorithm hyper-parameter optimization. AIP Adv. (2017). https://doi.org/10.1063/1.5009693

    Article  Google Scholar 

  22. H. Beitollahi, S. Tajik, F. GarkaniNejad et al., Recent advances in ZnO nanostructure-based electrochemical sensors and biosensors. J. Mater. Chem B. 8, 5826–5844 (2020)

    Article  Google Scholar 

  23. Y. Wu, J. Tie, C. Chen et al., Synthesis of LAS/ZnO/ZnWO4 3D rod-like heterojunctions with efficient photocatalytic performance: Synergistic effects of highly active site exposure and low carrier recombination. Ceram. Int. 45, 13656–13663 (2019)

    Article  CAS  Google Scholar 

  24. W.-T. Kim, K.-H. Na, D.-C. Park et al., Photocatalytic methylene blue degradation of electrospun Ti–Zn complex oxide nanofibers. Nanomaterials 10, 1311 (2020)

    Article  CAS  Google Scholar 

  25. N.G. Menon, S.S.V. Tatiparti, S. Mukherji, Synthesis, characterization and photocatalytic activity evaluation of TiO2–ZnO nanocomposites: elucidating effect of varying Ti: Zn molar ratio. Colloids Surf. A 565, 47–58 (2019)

    Article  CAS  Google Scholar 

  26. Y. Sun, Y. Gao, B. Zhao et al., One-step hydrothermal preparation and characterization of ZnO–TiO2 nanocomposites for photocatalytic activity. Mater. Res.Express 7, 085010 (2020)

    Article  CAS  Google Scholar 

  27. M. Shao, J. Han, M. Wei et al., The synthesis of hierarchical Zn–Ti layered double hydroxide for efficient visible-light photocatalysis. Chem. Eng. J. 168, 519–524 (2011)

    Article  CAS  Google Scholar 

  28. M. Thommes, K. Kaneko, A.V. Neimark et al., Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 87, 1051–1069 (2015)

    Article  CAS  Google Scholar 

  29. X. Wang, P. Wu, Z. Huang et al., Solar photocatalytic degradation of methylene blue by mixed metal oxide catalysts derived from ZnAlTi layered double hydroxides. Appl. Clay Sci. 95, 95–103 (2014)

    Article  CAS  Google Scholar 

  30. J.T. Kloprogge, D. Wharton, L. Hickey et al., Infrared and Raman study of interlayer anions CO32–, NO3, SO42– and ClO4 in Mg/Al-hydrotalcite. Am. Mineral. 87, 623–629 (2002)

    Article  CAS  Google Scholar 

  31. J.T. Kloprogge, R.L. Frost, Fourier transform infrared and raman spectroscopic study of the local structure of Mg-, Ni-, and Co-hydrotalcites. J. Solid State Chem. 146, 506–515 (1999)

    Article  CAS  Google Scholar 

  32. S.J. Palmer, R.L. Frost, L.-M. Grand, Raman spectroscopy of gallium- and zinc-based hydrotalcites. J. Raman Spectrosc. 42, 1168–1173 (2011)

    Article  CAS  Google Scholar 

  33. F. Tian, Y. Zhang, J. Zhang et al., Raman Spectroscopy: a new approach to measure the percentage of anatase TiO2 exposed (001) facets. J. Phys. Chem C. 116, 7515–7519 (2012)

    Article  CAS  Google Scholar 

  34. F. Fan, Z. Feng, C. Li, UV Raman spectroscopic studies on active sites and synthesis mechanisms of transition metal-containing microporous and mesoporous materials. Acc. Chem. Res. 43, 378–387 (2010)

    Article  CAS  Google Scholar 

  35. R.T. Sanderson, Principles of electronegativity part I. general nature. J. Chem. Educ. 65, 112 (1988)

    Article  CAS  Google Scholar 

  36. S. Jiang, M. Pang, J. Zhao et al., Superior performance asymmetric supercapacitors based on a directly grown three-dimensional lawn-like cobalt-zinc hydroxyfluorides nanoneedle arrays electrode. Chem. Eng. J. 326, 1048–1057 (2017)

    Article  CAS  Google Scholar 

  37. V.P. Santos, M.F.R. Pereira, J.J.M. Órfão et al., The role of lattice oxygen on the activity of manganese oxides towards the oxidation of volatile organic compounds. Appl. Catal. B 99, 353–363 (2010)

    Article  CAS  Google Scholar 

  38. S. Li, H.-Y. Zeng, J. Xiong et al., Polypyrrole decorated ZnTi hydrotalcite with enhanced adsorption and Cr(VI) photoreduction activity under visible-light. Adv. Powder Technol. 32, 3090–3100 (2021)

    Article  CAS  Google Scholar 

  39. M.E. Sánchez-Vergara, J.C. Alonso-Huitron, A. Rodriguez-Gómez et al., Determination of the optical GAP in thin films of amorphous dilithium phthalocyanine using the tauc and cody models. Molecules 17, 10000–10013 (2012)

    Article  Google Scholar 

  40. K. Liu, L. Wang, T. Fu et al., Oxygen-functionalized Ti3C2 MXene/exfoliated montmorillonite supported S-scheme BiOBr/Bi2MoO6 heterostructures for efficient photocatalytic quinolone antibiotics degradation. Chem. Eng. J. 457, 141271 (2023)

    Article  CAS  Google Scholar 

  41. F. Xie, Q. Xi, H. Li et al., Two-dimensional/two-dimensional heterojunction-induced accelerated charge transfer for photocatalytic hydrogen evolution over Bi5O7Br/Ti3C2: Electronic directional transport. J. Colloid Interface Sci. 617, 53–64 (2022)

    Article  CAS  Google Scholar 

  42. L. Zhang, X. Dong, Y. Wang et al., One-pot synthesis of SnS2/In2S3 heterostructures for efficient photocatalysis. Appl. Surf. Sci. 579, 152088 (2022)

    Article  CAS  Google Scholar 

  43. D. Xu, B. Cheng, S. Cao et al., Enhanced photocatalytic activity and stability of Z-scheme Ag2CrO4-GO composite photocatalysts for organic pollutant degradation. Appl. Catal. B 164, 380–388 (2015)

    Article  CAS  Google Scholar 

  44. M. Li, P. Li, L. Zhang et al., Facile fabrication of ZnO decorated ZnFe-layered double hydroxides @ biochar nanocomposites for synergistic photodegradation of tetracycline under visible light. Chem. Eng. J. 434, 134772 (2022)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Anhui Provincial Natural Science Foundation (No. 2008085QE194) and Innovation Fund Project of Anhui University of Science and Technology Graduate (No.2023CX2122).

Funding

Anhui Provincial Natural Science Foundation, No. 2008085QE194, Lifang Hu, Innovation Fund Project of Anhui University of Science and Technology Graduate, No.2023CX2122, Lifang Hu

Author information

Authors and Affiliations

Authors

Contributions

LH: Supervision, Funding support, Conceptualization, Data curation, Formal analysis, Writing–review & editing. MX: Investigation, Methodology, Data analysis, Writing–original draft. XH: Experiments, Characterization, Investigation. KY: Data analysis, Writing–original draft. JZ: Data analysis, Writing–review & editing. JW: Writing–review & editing, JH: Supervision, Validation, Writing–review & editing. JS: Writing–review & editing.

Corresponding authors

Correspondence to Lifang Hu or Jie He.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, L., Xing, M., He, X. et al. Photocatalytic degradation of tetracycline hydrochloride by ZnO/TiO2 composite photocatalyst. J Mater Sci: Mater Electron 34, 2273 (2023). https://doi.org/10.1007/s10854-023-11690-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11690-2

Navigation