Skip to main content
Log in

Hybrid fabrication of flexible fully printed carbon nanotube field-effect transistors

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A facile and cost-efficient multiple fully printed method to fabricate p-type carbon nanotube field-effect transistor (CNTFET) on the flexible paper substrate is proposed in this paper. Through the selective separation of polymer poly[(9,9-dioctylfluorenyl-2,7-diyl)-alt-(benzo [2,1,3] thiadiazol-4,7-diyl)] (PFO-BT) and stable dispersion of sodium dodecylbenzene sulfonate (SDBS) surfactant, the obtained CNTs individually dispersed ink (denoted as mono-dispersion ink) is applied in standard inkjet printers. The multiple system of Roll-to-Roll (R2R) flexo printing (to print silver-based catalyst ink for the subsequent electroless copper plating process) and inkjet printing (to print semiconductor channel material) is adopted in p-type metal-oxide-semiconductor field-effect transistor (MOSFET) fabrication with good printing line accuracy and high-throughput. The transistors obtained by this fabrication process can maintain an on-off ratio (Ion/Ioff \(\approx\) 2806), with approximately 70% of the devices’ on-off ratio is concentrated in 103–104 with a threshold voltage of about + 3 V. The flexible and fully printed strategy presented in this paper has a strong migration ability, which can be applied to a variety of semiconductor channel materials with diverse flexible substrates (e.g., polyimide, polyethylene terephthalate, etc.) and provide an effective and facile route for large-scale preparation of flexible integrated electronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. R.A. Street, W.S. Wong, S.E. Ready et al., Jet printing flexible displays. Mater. Today. 9(4), 32–37 (2006)

    Article  CAS  Google Scholar 

  2. S. Jiang, X.J. Liu, J.P. Liu et al., Flexible metamaterial electronics. Adv. Mater. 34(52), 2200070 (2022)

    Article  CAS  Google Scholar 

  3. H. Meng, Q. Ran, T.Y. Dai et al., Surface-alloyed nanoporous zinc as reversible and stable anodes for high-performance aqueous zinc-ion Battery. Nano-Micro Lett. 14(1), 128 (2022)

    Article  CAS  Google Scholar 

  4. Y.L. Yuan, Y.D. Lu, B.E. Jia et al., Integrated system of solar cells with hierarchical NiCo2O4 battery-supercapacitor hybrid devices for self-driving light-emitting diodes. Nano-Micro Lett. 11(1), 1–12 (2019)

    Article  CAS  Google Scholar 

  5. Y.M. Ren, K. Zhang, Z.D. Lin et al., Long-chain gemini surfactant-assisted blade coating enables large-area carbon-based perovskite solar modules with record performance. Nano-Micro Lett. 15(1), 182 (2023)

    Article  CAS  Google Scholar 

  6. J.J. Adams, E.B. Duoss, T.F. Malkowski et al., Conformal printing of electrically small antennas on three-dimensional surfaces. Adv. Mater. 23(11), 1335–1340 (2011)

    Article  CAS  Google Scholar 

  7. R. Kumar, X.H. Liu, J. Zhang et al., Room-temperature gas sensors under photoactivation: from metal oxides to 2D materials. Nano-Micro Lett. 12(1), 1–37 (2020)

    Article  Google Scholar 

  8. L. Cai, S.M. Zhang, J.S. Miao et al., Fully printed stretchable thin-film transistors and integrated logic circuits. ACS Nano. 10(12), 11459–11468 (2016)

    Article  CAS  Google Scholar 

  9. M. Jung, J. Kim, J. Noh et al., All-printed and roll-to-roll-printable 13.56-MHz-operated 1-bit RF tag on plastic foils. IEEE Trans. Electron. Devices. 57(3), 571–580 (2010)

    Article  CAS  Google Scholar 

  10. A. Reina, X.T. Jia, J. Ho et al., Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 9(1), 30–35 (2009)

    Article  CAS  Google Scholar 

  11. Z.H. Zeng, G. Wang, B.F. Wolan et al., Printable aligned single-walled carbon nanotube film with outstanding thermal conductivity and electromagnetic interference shielding performance. Nano-Micro Lett. 14(1), 179 (2022)

    Article  CAS  Google Scholar 

  12. X. Liu, W. Kang, X. Li et al., Solid-state mechanochemistry advancing two dimensional materials for lithium-ion storage applications: a mini review. Nano Mater. Sci. 5(2), 210–227 (2023)

    Article  CAS  Google Scholar 

  13. H.S. Sitinamaluwa, H. Li, K.C. Wasalathilake et al., Nanoporous SiOx coated amorphous silicon anode material with robust mechanical behavior for high-performance rechargeable Li-ion batteries. Nano Mater. Sci. 1(1), 70–76 (2019)

    Article  Google Scholar 

  14. J. Perelaer, B.J. de Gans, U.S. Schubert, Ink-jet printing and microwave sintering of conductive silver tracks. Adv. Mater. 18(16), 2101–2104 (2006)

    Article  CAS  Google Scholar 

  15. I.N. Kholmanov, C.W. Magnuson, R. Piner et al., Optical, electrical, and electromechanical properties of hybrid graphene/carbon nanotube films. Adv. Mater. 27(19), 3053–3059 (2015)

    Article  CAS  Google Scholar 

  16. C. Wu, Z.H. Chen, X. Du et al., Transparent, conductive carbon nanotube films. Science. 305(5688), 1273–1276 (2004)

    Article  CAS  Google Scholar 

  17. C.Y. Feng, H.J. Chen, M.Y. Yang et al., Metallization of polyphenylene sulfide by low-cost mussel-inspired catechol/polyamine surface modification. ACS Appl. Polym. Mater. 4(6), 4445–4453 (2022)

    Article  CAS  Google Scholar 

  18. B.H. Liang, Z. Zhang, W.J. Chen et al., Direct patterning of carbon nanotube via stamp contact printing process for stretchable and sensitive sensing devices. Nano-Micro Lett. 11(1), 92 (2019)

    Article  CAS  Google Scholar 

  19. C.R. Espinoza, D.A. Ryndyk, A. Dianat et al., First principles study of field effect device through Van Der Waals and lateral heterostructures of graphene, phosphorene and graphane. Nano Mater. Sci. 4(1), 52–59 (2022)

    Article  Google Scholar 

  20. X.J. Chang, W.M. Henderson, D.C. Bouchard, Multiwalled carbon nanotube dispersion methods affect their aggregation, deposition, and biomarker response. Environ. Sci. Technol. 49(11), 6645–6653 (2015)

    Article  CAS  Google Scholar 

  21. L. Lyu, K.D. Seong, J.M. Kim et al., CNT/high mass loading MnO2/graphene-grafted carbon cloth electrodes for high-energy asymmetric supercapacitors. Nano-Micro Lett. 11(1), 1–12 (2019)

    Article  CAS  Google Scholar 

  22. F. Michelis, L. Bodelot, Y. Bonnassieux et al., Highly reproducible, hysteresis-free, flexible strain sensors by inkjet printing of carbon nanotubes. Carbon. 95, 1020–1026 (2015)

    Article  CAS  Google Scholar 

  23. K. Kordas, T. Mustonen, G. Toth et al., Inkjet printing of electrically conductive patterns of carbon nanotubes. Small. 2(8–9), 1021–1025 (2006)

    Article  CAS  Google Scholar 

  24. A.K. Keshri, D. Lahiri, A. Agarwal, Carbon nanotubes improve the adhesion strength of a ceramic splat to the steel substrate. Carbon. 49(13), 4340–4347 (2011)

    Article  CAS  Google Scholar 

  25. F. Li, Y. Li, J. Qu et al., Recent developments of stamped planar micro-supercapacitors: materials, fabrication and perspectives. Nano Mater. Sci. 3(2), 154–169 (2021)

    Article  CAS  Google Scholar 

  26. Y.X. Hu, H.J. Huang, D.S. Yu et al., All-climate aluminum-ion batteries based on binder-free MOF-derived FeS2@C/CNT cathode. Nano-Micro Lett. 13(1), 159 (2021)

    Article  CAS  Google Scholar 

  27. L. Valentini, M. Cardinali, D. Bagnis et al., Solution casting of transparent and conductive carbon nanotubes/poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) films under a magnetic field. Carbon. 46(11), 1513–1517 (2008)

    Article  CAS  Google Scholar 

  28. C.H. Liu, F. Wang, J. Zhang et al., Efficient photoelectrochemical water splitting by g-C3N4/TiO2 nanotube array heterostructures. Nano-Micro Lett. 10(2), 1–13 (2018)

    Article  Google Scholar 

  29. Y.T. Liu, Q.P. Feng, X.M. Xie et al., The production of flexible and transparent conductive films of carbon nanotube/graphene networks coordinated by divalent metal (Cu, ca or mg) ions. Carbon. 49(10), 3371–3375 (2011)

    Article  CAS  Google Scholar 

  30. E.Z. Shi, L.H. Zhang, Z. Li et al., TiO2-coated carbon nanotube-silicon solar cells with efficiency of 15%. Sci. Rep. 2(1), 884 (2012)

    Article  Google Scholar 

  31. M. Kaempgen, G.S. Duesberg, S. Roth, Transparent carbon nanotube coatings. Appl. Surf. Sci. 252(2), 425–429 (2005)

    Article  CAS  Google Scholar 

  32. J. Vaillancourt, H.Y. Zhang, P. Vasinajindakaw et al., All ink-jet-printed carbon nanotube thin-film transistor on a polyimide substrate with an ultrahigh operating frequency of over 5 GHz. Appl. Phys. Lett. 93(24), 243301 (2008)

    Article  Google Scholar 

  33. C.M. Homenick, R. James, G.P. Lopinski et al., Fully printed and encapsulated SWCNT-based thin film transistors via a combination of R2R gravure and inkjet printing. ACS Appl. Mater. Interfaces. 8(41), 27900–27910 (2016)

    Article  CAS  Google Scholar 

  34. P. Beecher, P. Servati, A. Rozhin et al., Ink-jet printing of carbon nanotube thin film transistors. J. Appl. Phys. 102(4), 043710 (2007)

    Article  Google Scholar 

  35. A. Shimoni, S. Azoubel, S. Magdassi, Inkjet printing of flexible high-performance carbon nanotube transparent conductive films by coffee ring effect. Nanoscale. 6(19), 11084–11089 (2014)

    Article  CAS  Google Scholar 

  36. Y.H. Yeh, C.C. Cheng, B.C.M. Lai et al., Flexible hybrid substrates of roll-to-roll manufacturing for flexible display application. J. Soc. Inf. Disp. 21(1), 34–40 (2013)

    Article  CAS  Google Scholar 

  37. X.M. Liu, Z.D. Huang, S.W. Oh et al., Carbon nanotube (CNT)-based composites as electrode material for rechargeable Li-ion batteries: a review. Compos. Sci. Technol. 72(2), 121–144 (2012)

    Article  CAS  Google Scholar 

  38. S.J. Choi, C. Wang, C.C. Lo Kumar, Comparative study of solution-processed carbon nanotube network transistors. Appl. Phys. Lett. 101(11), 112104 (2012)

    Article  Google Scholar 

  39. C.Y. Cao, J.B. Andrews, A. Kumar et al., Improving contact interfaces in fully printed carbon nanotube thin-film transistors. ACS Nano. 10(5), 5221–5229 (2016)

    Article  CAS  Google Scholar 

  40. R.L. Yang, X.C. Gui, L. Yao et al., Ultrathin, lightweight, and flexible CNT buckypaper enhanced using MXenes for electromagnetic interference shielding. Nano-Micro Lett. 13(1), 66 (2021)

    Article  Google Scholar 

  41. S.C. Tong, C.D. Gong, C.J. Zhang et al., Fully-printed, flexible cesium-doped triple cation perovskite photodetector. Appl. Mater. Today. 15, 389–397 (2019)

    Article  Google Scholar 

  42. Y. Wang, H. Guo, J.J. Chen et al., Paper-based inkjet-printed flexible electronic circuits. ACS Appl. Mater. Interfaces. 8(39), 26112–26118 (2016)

    Article  CAS  Google Scholar 

  43. G. Han, B. Tan, F. Cheng et al., CNT toughened aluminium and CFRP interface for strong adhesive bonding. Nano Mater. Sci. 4(3), 266–275 (2022)

    Article  CAS  Google Scholar 

  44. Z. Zhou, H. Zhang, J. Qiu et al., Atomic insights into synergistic effect of pillared graphene by carbon nanotube on the mechanical properties of polymer nanocomposites. Nano Mater. Sci. 4(3), 235–243 (2022)

    Article  CAS  Google Scholar 

  45. Y. Wang, C. Yan, S.Y. Cheng et al., Flexible RFID tag metal antenna on paper-based substrate by inkjet printing technology. Adv. Funct. Mater. 29(29), 1902579 (2019)

    Article  Google Scholar 

  46. L. Podgorski, B. Chevet, L. Onic et al., Modification of wood wettability by plasma and corona treatments. Int. J. Adhes. Adhes. 20(2), 103–111 (2000)

    Article  CAS  Google Scholar 

  47. A. Denneulin, J. Bras, F. Carcone et al., Impact of ink formulation on carbon nanotube network organization within inkjet printed conductive films. Carbon. 49(8), 2603–2614 (2011)

    Article  CAS  Google Scholar 

  48. A.A. Yinusa, M.G. Sobamowo, Thermal instability and dynamic response analysis of a tensioned carbon nanotube under moving uniformly distributed external pressure. Nano Mater. Sci. 3(1), 75–88 (2021)

    Article  CAS  Google Scholar 

  49. A. Rafique, I. Ferreira, G. Abbas et al., Recent advances and challenges toward application of fibers and textiles in integrated photovoltaic energy storage devices. Nano-Micro Lett. 15(1), 40 (2023)

    Article  CAS  Google Scholar 

  50. A. Duzynska, M. Swiniarski, A. Wroblewska et al., Phonon properties in different types of single-walled carbon nanotube thin films probed by Raman spectroscopy. Carbon. 105, 377–386 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by National Natural Science Foundation of China (Grant No. 51902040), and the Natural Science Foundation of Sichuan Province (Grant No. 2023NSFSC0410).

Funding

This work is supported by National Natural Science Foundation of China (Grant No. 51902040), and the Natural Science Foundation of Sichuan Province (Grant No. 2023NSFSC0410).

Author information

Authors and Affiliations

Authors

Contributions

Material preparation, data collection and analysis were performed by HZ and XL. The first draft of the manuscript was written by HZ. Project administration, conceptualization and formal analysis were performed by YW, JL and ZX. Visualization, Investigation and Methodology were performed by YC, ZF and YW. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Yan Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 891.1 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Hw., Liao, Xh., Wang, Ys. et al. Hybrid fabrication of flexible fully printed carbon nanotube field-effect transistors. J Mater Sci: Mater Electron 34, 2147 (2023). https://doi.org/10.1007/s10854-023-11585-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11585-2

Navigation