Skip to main content
Log in

Application of metal interconnection process with micro-LED display by laser-assisted bonding technology

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Bonding between the micro-LED chip and the substrate soldered joint has become a key bottleneck after the mass transfer process of moving individual chips regarded as the biggest technical obstacle for the commercialization of display. A new laser-assisted bonding process of pure metallic Au/Sn with high productivity and low cost is applied in 62 × 78 pixels full-color micro-LED display. Au–Sn solder alloy has high yield strength, corrosion and creep resistance, good wetting behavior, as well as good thermal/electrical conductivity [1]. Low-temperature solid liquid bonding method below 280 °C to achieve reliable metal electrical connection between microscale LED devices and the backplane is achieved firstly, to ensure the drive backplane operation well. The micro-morphology and formation mechanism of different alloy phase compositions of metal elements have been thoroughly analyzed, and a feasible technological route has been developed for the upcoming mass production of micro-LED display modules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

References

  1. JC. Mcnulty, processing and reliability issues for eutectic ausn solder joints, in IMAPS 2008; international symposium on microelectronics, (2008)

  2. B. Jang, S. Won, J. Kim, J. Kim, M. Oh, H.J. Lee, J.H. Kim, Auxetic meta-display: stretchable display without image distortion. Adv. Funct. Mater. (2022). https://doi.org/10.1002/adfm.202113299

    Article  Google Scholar 

  3. Y. Sun, J. Zhao, J. Ma, Y. Lin, C. Tian, L. Shi, and H. Sun, Analysis of temperature effect of RGB mini/micro LED chips. In SID symposium digest of technical papers, 53:406–409 (2022)

  4. Q. Yang, Z. Yang, Y.F. Lan, S.T. Wu, Low-diffraction transparent micro light-emitting diode displays with optimized pixel structure. J. Soc. Inf. Disp. (2022). https://doi.org/10.1002/jsid.1122

    Article  Google Scholar 

  5. M. Liu, J. Nie, Y. Liu, J. Sun, M. Li, C. Yan, Q. Yan, Research on the reliability of micro LED high-density solder joints under thermal cycling conditions. J. Phys. Conf. Ser. (2022). https://doi.org/10.1088/1742-6596/2221/1/012010

    Article  Google Scholar 

  6. J.M. Smith, R. Ley, M.S. Wong, H.B. Yong, P. Denbaars, Comparison of size-dependent characteristics of blue and green InGaN microLEDs down to 1 µm in diameter. Appl. Phys. Lett. 116, 071102 (2020)

    Article  CAS  Google Scholar 

  7. Y. Boussadi, N. Rochat, J.P. Barnes, B.B. Bakir, C. Licitra, Investigation of sidewall damage induced by reactive ion etching on AlGaInP MESA for micro-LED application. J. Lumin. 234, 117937 (2021)

    Article  CAS  Google Scholar 

  8. R.H. Horng, Y.F. Chen, C.H. Wang, H.Y. Chen, Development of metal bonding for passive matrix micro-LED display applications. IEEE Electron Device Lett. 42, 1017–1020 (2021)

    Article  CAS  Google Scholar 

  9. W. Guo, H. Meng, Y. Chen, T. Sun, Y. Li, Wafer-level monolithic integration of vertical micro-LEDs on glass. IEEE Photonics Technol. Lett. 32, 1–1 (2020)

    Article  Google Scholar 

  10. C.M. Kang, J.Y. Lee, D.J. Kong, J.P. Shim, D.S.J.A.P. Lee, Hybrid full-color inorganic light-emitting diodes integrated on a single wafer using selective area growth and adhesive bonding. ACS Photonics 5, 4413–4422 (2018)

    Article  CAS  Google Scholar 

  11. C. Liou, F. Shih, Y. Huang, Z. Hu, C. Tsou, W. Fang, Technology, the implementation of sapphire micro-reflector for monolithic micro-LED array. IEEE Trans. Compon. Pack. Manuf. Technol. (2021). https://doi.org/10.1109/TCPMT.2021.3049563

    Article  Google Scholar 

  12. C. Linghu, S. Zhang, C. Wang, H. Luo, J. Song, Mass transfer for micro-LED display: transfer printing techniques-science direct. Semicond. Semimet. (2021). https://doi.org/10.1016/bs.semsem.2020.12.002

    Article  Google Scholar 

  13. H.S. Joo, C.J. Lee, K.D. Min, B.U. Hwang, S.B. Jung, Mechanical properties and microstructural evolution of solder alloys fabricated using laser-assisted bonding. J. Mater. Sci. Mater. Electron. 31, 1–7 (2020)

    Article  Google Scholar 

  14. C.C. Lee, C.Y. Wang, G. Matijasevic, Au-In bonding below the eutectic temperature. IEEE Trans. Compon. Hybrids Manuf. Technol. 16, 311–316 (1993)

    Article  CAS  Google Scholar 

  15. C.J. Hun, S.J. Lee, K.O. Kwon, J.Y. Choi, T. Jung, M. Han, S.. J. Han, A monolithically integrated micro-LED display based on GaN-on-silicon substrate. Appl. Phys. Express 13(026504), 026501 (2020)

    CAS  Google Scholar 

  16. J. Huang, Y. Wang, J. Guo, S. Wu, H. Xie, S. Zhou, Anisotropic conductive shape-memory aerogels as adaptive reprogrammable wearable electronics for accurate long-term pressure sensing. J. Mater. Chem. A (2022). https://doi.org/10.1039/D1TA10547G

    Article  Google Scholar 

  17. K.S. Choi, J. Joo, K.S. Jang, Y.S. Eom, S. Yoo, Development of digital signage modules composed of mini-LEDs using laser-assisted bonding (LAB) technology. In 2020 IEEE 70th electronic components and technology conference (ECTC), 2020

  18. K.S. Choi, J. Joo, K.S. Jang, G.M. Choi, Laser-assisted bonding (LAB), Its bonding materials, and their applications. J. Weld. Join. 38, 138–144 (2020)

    Google Scholar 

  19. K.S. Choi, J. Joo, Y.S. Eom, G.M. Choi, J.W. Choi, Simultaneous transfer and bonding (SITRAB) process for micro-LEDs using laser-assisted bonding with compression (LABC) process and SITRAB adhesive. In 2021 IEEE 71st electronic components and technology conference(ECTC), 2021

  20. K. Schricker, L. Schmitt, M. Graetzel, J. Bergmann, Bonding mechanisms in laser-assisted joining of metal-polymer composites. J. Adv. Join. Process (2020). https://doi.org/10.1016/j.jajp.2020.100008

    Article  Google Scholar 

  21. W.A. Braganca, K.O.J.O.E. Kim, Characterization of laser beams: theory and application in laser-assisted bonding process. Opt. Eng. 60, 060801 (2021)

    Article  Google Scholar 

  22. W.A. Braganca, K.S. Jang, H.C. Bae, Choi, Collective laser-assisted bonding process for 3D TSV integration with NCP. Etri J. (2019). https://doi.org/10.4218/etrij.2018-0171

    Article  Google Scholar 

  23. O. Temel, Y.E. Kalay, T. Akin, Wafer-level low-temperature solid–liquid inter-diffusion bonding with thin Au–Sn layers for MEMS encapsulation. J. Microelectromechanical Syst. 30, 64–71 (2021)

    Article  CAS  Google Scholar 

  24. Z. Pan, C. Guo, X. Wang, J. Liu, Z.J.A.M.T. Gong, Wafer log cale micro mm EDs transferred onto an adhesive film for planar and flexible displays. Adv. Mater. Technol. 5, 2000549 (2020)

    Article  CAS  Google Scholar 

  25. T. Namazu, H. Takemoto, S.J.S. Inoue, Tensile and creep characteristics of sputtered gold-tin eutectic solder film evaluated by XRD tensile testing. Sens. Mater 22, 13–24 (2010)

    CAS  Google Scholar 

  26. T. Namazu, H. Takemoto, H. Fujita, S.J.S. Inoue, Uniaxial tensile and shear deformation tests of gold-tin eutectic solder film. Sci. Technol. Adv. Mater.  8, 146–152 (2007)

    Article  CAS  Google Scholar 

  27. J.S. Kim, W.S. Choi, D. Kim, A. Shkel, C.C.J.M.S. Lee, Fluxless silicon-to-alumina bonding using electroplated Au–Sn–Au structure at eutectic composition. Mater. Sci. Eng. 458, 101–107 (2007)

    Article  Google Scholar 

  28. Y.F.J. Fangzhiqiang, Low temperature Sn rich Au–Sn wafer-level bonding. J. Semicond. (2013). https://doi.org/10.1088/1674-4926/34/10/106001

    Article  Google Scholar 

  29. L. Li, L. Tong, Q. Ge, The influence of gold-tin eutectic-welding voids on the thermal resistance of ceramic package. (2015). https://doi.org/10.16257/j.cnki.1681-1070.2015.0035

Download references

Funding

The work was supported by Sichuan Science and Technology program (Grant No.2022JDRC0007).

Author information

Authors and Affiliations

Authors

Contributions

WT: is responsible for the experimental validation, data analysis and full manuscript writing of the entire research. ZM: contributed significantly to analysis and manuscript preparation. XC and YC: contributed to the conception of the study. JL: performed the oversight and leadership responsibility for the research planning and execution. XH: Provided comprehensive experimental platforms and scientific guidance for the experimental results, so it is more reasonable for him as the corresponding author.

Corresponding author

Correspondence to Xiuqi Huang.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, W., Ma, Z., Cao, X. et al. Application of metal interconnection process with micro-LED display by laser-assisted bonding technology. J Mater Sci: Mater Electron 34, 2253 (2023). https://doi.org/10.1007/s10854-023-11549-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11549-6

Navigation