Skip to main content

Advertisement

Log in

Synthesis of ZnWO4 nanorods: the photocatalytic effects on RhB dye degradation upon irradiation with sunlight light

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

A Correction to this article was published on 18 November 2023

This article has been updated

Abstract

Due to its efficiency and eco-friendliness, photocatalysis has become a potential technique for the reduction of organic pollutants in water. In the present investigation, we looked into the photocatalytic degradation of Rhodamine B, a common dye pollutant, utilizing zinc tungstate (ZnWO4) as the photocatalyst. The ZnWO4 nanorods was synthesized using a simple and cost-effective hydrothermal procedure and characterized with various techniques, like X-ray diffraction, FTIR, DRS-UV, Raman, field emission scanning electron microscopy (FE-SEM) with energy-dispersive X-ray spectroscopy (EDS), High-resolution Transmission electron microscope (HR-TEM), and X-ray photoelectron spectroscopy. Rhodamine B degradation under UV light irradiation was used to gauge ZnWO4 photocatalytic activity. The outcomes showed that ZnWO4 had excellent photocatalytic activity, resulting in the considerable breakdown of Rhodamine B in a short amount of time. With a high degradation rate and efficiency, the improved reaction conditions improved photocatalytic performance. The study also shed light on the intermediate products created during the degradation process and the photocatalytic mechanism, which may help in understanding the reaction pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 1
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Data will be made available on reasonable request.

Change history

References

  1. R. Manigandan, K. Giribabu, R. Suresh, S. Munusamy, S. Praveen Kumar, S. Muthamizh, A. Stephen, V. Narayanan, Int. J. Chemtech Res. 6, 3395–3398 (2014)

    CAS  Google Scholar 

  2. K.E. O’Shea, D.D. Dionysiou, J. Phys. Chem. Lett. 3, 2112–2113 (2012). https://doi.org/10.1021/jz300929x

    Article  CAS  Google Scholar 

  3. S. Chu, J. Shao, H. Qu, X. Wang, R. Xiao, H. Zhang, ChemSusChem (2023). https://doi.org/10.1002/cssc.202300886

    Article  Google Scholar 

  4. G.F.K. Nindjio, R.F.T. Tagne, S.L.Z. Jiokeng, C.G. Fotsop, A. Bopda, G. Doungmo, R.C.T. Temgoua, I. Doench, E.T. Njoyim, A.K. Tamo, A. Osorio-Madrazo, I.K. Tonle, Polymers. 14, 3776 (2022). https://doi.org/10.3390/polym14183776

    Article  CAS  Google Scholar 

  5. B. Bathula, S.B. Eadi, H.-D. Lee, K. Yoo, Environ. Res. 228, 115851 (2023). https://doi.org/10.1016/j.envres.2023.115851

    Article  CAS  Google Scholar 

  6. G.B. Bhanuse, S. Kumar, Y.-P. Fu, Chemistry (2023). https://doi.org/10.1002/chem.202301872

    Article  Google Scholar 

  7. R. Xiong, X. Zhou, K. Chen, Y. Xiao, B. Cheng, S. Lei, Inorg. Chem. 62, 3646–3659 (2023). https://doi.org/10.1021/acs.inorgchem.2c04500

    Article  CAS  Google Scholar 

  8. H.L. Abubakar, J.O. Tijani, S.A. Abdulkareem, A. Mann, S. Mustapha, Heliyon. 8, 09964 (2022). https://doi.org/10.1016/j.heliyon.2022.e09964

    Article  CAS  Google Scholar 

  9. C.B. Anucha, I. Altin, Z. Biyiklioglu, E. Bacaksiz, I. Polat, V.N. Stathopoulos, Nanomaterials (Basel). 10, 2139 (2020). https://doi.org/10.3390/nano10112139

    Article  CAS  Google Scholar 

  10. L. Chang, G. Zhu, Q.-U. Hassan, B. Cao, S. Li, Y. Jia, J. Gao, F. Zhang, Q. Wang, Langmuir. 35, 11265 (2019). https://doi.org/10.1021/acs.langmuir.9b01323

    Article  CAS  Google Scholar 

  11. L. Tian, Y. Rui, K. Sun, W. Cui, W. An, Nanomaterials (Basel). 8, 33 (2018). https://doi.org/10.3390/nano8010033

    Article  CAS  Google Scholar 

  12. A. Paños-Crespo, J. Toledano-Serrabona, M.-Ã. Sánchez-Garcés, C. Gay-Escoda, Med. Oral Patol. Oral Cir. Bucal. (2023). https://doi.org/10.4317/medoral.26157

    Article  Google Scholar 

  13. L.J. Neil, Development of a new technique to study the kinetics of hydroxyl radical uptake on micron-sized organic aerosols (2010). http://hdl.handle.net/10012/5103

  14. K.A. Vishnumurthy, Arul Varman Kesavan, S.K. Swathi, P.C. Ramamurthy, Opt. Mater. 109, 110303 (2020). https://doi.org/10.1016/j.optmat.2020.110303

  15. R. Comparelli, Materials. 12(15), 2459 (2019). https://doi.org/10.3390/ma12152459

    Article  CAS  Google Scholar 

  16. T. Higashi, H. Nishiyama, Y. Pihosh, K. Wakishima, Y. Kawase, Y. Sasaki, A. Nagaoka, K. Yoshino, K. Takanabe, K. Domen, Phys. Chem. Chem. Phys. 25, 20737–20748 (2023). https://doi.org/10.1039/D3CP02563B

    Article  CAS  Google Scholar 

  17. Z.Z. Noor, N.S.M. Sabli, Sustainable water treatment: innovative technologies (CRC Press, Boca Raton, 2017). https://doi.org/10.1201/9781315116792

    Book  Google Scholar 

  18. H. Karyab, M. Ghasemi, F. Ghotbinia, N. Nazeri, Int. J. Biol. Macromol. 249, 125977 (2023). https://doi.org/10.1016/j.ijbiomac.2023.125977

    Article  CAS  Google Scholar 

  19. A.X. Chen, G.L. Esparza, I. Simon, S.P. Dunfield, Y. Qie, J.A. Bunch, R. Blau, A. Lim, H. Zhang, S.E. Brew, F.M. O’Neill, D.P. Fenning, D.J. Lipomi, ACS Appl. Mater. Interfaces. 15, 38143–38153 (2023). https://doi.org/10.1021/acsami.3c08341

    Article  CAS  Google Scholar 

  20. X. Chai, J. Li, X. Wang, Y. Li, X. Yao, Opt. Express. 24, 22438 (2016). https://doi.org/10.1364/OE.24.022438

    Article  CAS  Google Scholar 

  21. H.-Y. Zou, X.-G. Wang, Luminescence. 36, 1452 (2021). https://doi.org/10.1002/bio.4086

    Article  CAS  Google Scholar 

  22. K. Wang, W. Feng, X. Feng, Y. Li, P. Mi, S. Shi, Spectrochim. Acta A Mol. Biomol. Spectrosc 154, 72 (2016). https://doi.org/10.1016/j.saa.2015.10.026

    Article  CAS  Google Scholar 

  23. X. Zhao, Y. Zhu, Environ. Sci. Technol. 40, 3367 (2006). https://doi.org/10.1021/es052029e

    Article  CAS  Google Scholar 

  24. F.A. Alharthi, H.K. Aldubeikl, H.S. Alanazi, W.S. Al-Nafaei, I. Hasan, Nanomaterials 13(2), 362 (2023). https://doi.org/10.3390/nano13020362

    Article  CAS  Google Scholar 

  25. J. Li, M. Nolan, C. Detavernier, J. Chem. Phys. 159, 034702 (2023). https://doi.org/10.1063/5.0154926

    Article  CAS  Google Scholar 

  26. M.R. Al-Mamun, M.Z. Iqbal Rokon, M.A. Rahim, M.I. Hossain, M.S. Islam, M.R. Ali, M.S. Bacchu, H. Waizumi, T. Komeda, M.Z.H. Khan, Heliyon 9, e16506 (2023). https://doi.org/10.1016/j.heliyon.2023.e16506

    Article  CAS  Google Scholar 

  27. P. Mal, G. Bera, P. Rambabu, G.R. Turpu, B. Chakraborty, L.M. Ramaniah, R.P. Singh, P. Sen, P. Das, J. Phys. Condens. Matter  29, 075901 (2017). https://doi.org/10.1088/1361-648X/aa4e64

    Article  Google Scholar 

  28. S. Yamazaki, H. Ishida, D. Shimizu, K. Adachi, ACS Appl. Mater. Interfaces. 7, 26326 (2015). https://doi.org/10.1021/acsami.5b09310

    Article  CAS  Google Scholar 

  29. R. Cuscó, E. A-Lladó, J. Ibáñez, L. Artús, J. Jiménez, B. Wang, M.J. Callahan, Phys. Rev. B 75, 165202 (2007). https://doi.org/10.1103/PhysRevB.75.165202

    Article  CAS  Google Scholar 

  30. G. Barbillon, Phys. Chem. Chem. Phys. 25, 20178–20182 (2023). https://doi.org/10.1039/D3CP02910G

    Article  CAS  Google Scholar 

  31. J. Yan, Y. Shen, F. Li, T. Li, Sci. World. J. (2013). https://doi.org/10.1155/2013/458106

    Article  Google Scholar 

  32. S. Xin, Y. Wang, F. Lil, B. Liu, J. Zhang, Y. Tao, J. Nanosci. Nanotechnol. 14, 3743 (2014). https://doi.org/10.1155/2013/458106

    Article  CAS  Google Scholar 

  33. J.C. Sczancoski, L.S. Cavalcante, M.R. Joya, J.W.M. Espinosa, P.S. Pizani, J.A. Varela, E. Longo, J. Colloid Interface Sci. 330, 227 (2009). https://doi.org/10.1016/j.jcis.2008.10.034

    Article  CAS  Google Scholar 

  34. Y. Wu, J. Zhang, B. Long, H. Zhang, ACS Omega. 6, 15057 (2021). https://doi.org/10.1021/acsomega.1c01214

    Article  CAS  Google Scholar 

  35. L. Tian, Y. Rui, K. Sun, W. Cui, W. An, Nanomaterials. 8, 33 (2018). https://doi.org/10.3390/nano8010033

    Article  CAS  Google Scholar 

  36. S. Muthamizh, J. Yesuraj, R. Jayavel, D. Contreras, K. Arul, Varman, R.V. Mangalaraja, J. Mater. Sci. Mater. Electron. 32, 2744–2756 (2021). https://doi.org/10.1007/s10854-020-05007-w

    Article  CAS  Google Scholar 

  37. M. Mousavi, A. H-Yangjeh, M. Abitorabi, J. Colloid Interface Sci. 480, 218–231 (2016). https://doi.org/10.1016/j.jcis.2016.07.021

    Article  CAS  Google Scholar 

  38. V.S. Kirankumar, N. Mayank, S. Sumathi, J. Taiwan Inst. Chem. Eng. 95, 1–14 (2018). https://doi.org/10.1016/j.jtice.2018.09.020

    Article  CAS  Google Scholar 

  39. Y. Sandesh, Sawant, M.H. Cho, RSC Adv. 5, 97788–97797 (2015). https://doi.org/10.1039/C5RA22372E

    Article  CAS  Google Scholar 

  40. J. Wu, X. Shen, X. Miao, Z. Ji, J. Wang, T. Wang, M. Liu, Eur. J. Inorg. Chem. (2017). https://doi.org/10.1002/ejic.201700215

    Article  Google Scholar 

  41. M.B. Abdelaziza, B. Choucheneb, L. Balanc, T. Griesd, G. Medjahdid, H. Ezzaouiaa, R. Schneider, Mol. Catal. 463, 110–111 (2019). https://doi.org/10.1016/j.mcat.2018.12.004

    Article  CAS  Google Scholar 

Download references

Funding

This project was supported by Researchers Supporting Project number (RSP2023R78), King Saud University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Contributions

MS contributed to methodology and experiment, formal analysis, writing of the original draft, and editing of the manuscript. AA contributed to reviewing and editing of the manuscript and provided necessary support. AS contributed to formal analysis. SVC contributed to formal analysis. AVK contributed to formal analysis, editing of the manuscript, and support.

Corresponding authors

Correspondence to Muthamizh Selvamani or Arul Varman Kesavan.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: due to update in co-authors name.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Selvamani, M., Alsulmi, A., Sundaramoorthy, A. et al. Synthesis of ZnWO4 nanorods: the photocatalytic effects on RhB dye degradation upon irradiation with sunlight light. J Mater Sci: Mater Electron 34, 2094 (2023). https://doi.org/10.1007/s10854-023-11513-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11513-4

Navigation