Skip to main content
Log in

Effect of cobalt on the magnetic properties and temperature coefficient of resistance for lanthanum-strontium manganite

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

An analysis of the sensitivity of the electrical resistance to temperature changes in cobalt-doped lanthanum-strontium manganite was carried out to provide new insight into the effects of the magnetic interactions between cobalt and manganese ions on the electric properties. Cobalt-doped lanthanum-strontium manganites, La0.7Sr0.3CoxMn1−xO3 with x ranging from 0 to 0.1 (Δx = 0.025), were synthesized by high-energy ball milling for 5 h, followed by annealing at 1673 K. X-ray diffraction showed the presence of a rhombohedral phase for all the studied compositions, indicating a decrease in the bandwidth as the cobalt content increased. The Curie temperature, determined by vibrating sample magnetometry, and the insulator-metal transition temperature, determined by electrical measurements, decrease near to room temperature with increases cobalt content up to 0.1 by weakening the double exchange magnetic interaction. The results confirmed that cobalt increased the temperature coefficient of resistance for the doped manganites by up to 15.6% for 0.1 mol of cobalt near room temperature. Therefore, these materials will prove useful for the development of specialized sensing devices such as bolometers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available to download from [https://data.mendeley.com/datasets/mfyyfkt7ww/draft?a=9b747f51-5fcc-4f59-917d-7618db494a2a].

References

  1. P.L. Richards, Bolometers for infrared and millimeter waves. J. Appl. Phys. 76(1), 1–24 (1994). https://doi.org/10.1063/1.357128

    Article  CAS  Google Scholar 

  2. Y. Li, G. Wang, M. Akbari-Saatlu, M. Procek, H.H. Radamson, Si and SiGe nanowire for micro-thermoelectric generator: a review of the current state of the art. Front. Mater. 8, 1–24 (2021). https://doi.org/10.3389/fmats.2021.611078

    Article  Google Scholar 

  3. V.P.S. Awana, R. Tripathi, N. Kumar, H. Kishan, G.L. Bhalla, R. Zeng, H.U. Habermeir, Magnetotransport of La0.7Ca0.3–xSrxMnO3(ag): a potential room temperature bolometer and magnetic sensor. J. Appl. Phys. 107(9), 2331 (2010). https://doi.org/10.1063/1.3365412

    Article  Google Scholar 

  4. M. Rajeswari, C.H. Chen, A. Goyal, C. Kwon, M.C. Robson, R. Ramesh, T. Venkatesan, Low-frequency optical response in epitaxial thin films of La0.67Ca0.33MnO3 exhibiting colossal magnetoresistance. Appl. Phys. Lett. 68(25), 3555–3557 (1996). https://doi.org/10.1063/1.116635

    Article  CAS  Google Scholar 

  5. A. Goyal, M. Rajeswari, R. Shreekala, S.E. Lofland, S.M. Bhagat, T. Boettcher, C. Kwon, R. Ramesh, T. Venkatesan, Material characteristics of perovskite manganese oxide thin films for bolometric applications. Appl. Phys. Lett. 71(17), 2535–2537 (1997). https://doi.org/10.1063/1.120427?ver=pdfcov

    Article  CAS  Google Scholar 

  6. H. Zhang, T. Liu, L. Zhao, H. Jiang, A. Chang, Effect of Al2O3 addition on the microstructure and electrical properties of LaMnO3-based NTC thermistors. J. Mater. Sci. Mater. Electron 28(19), 14195–14201 (2017). https://doi.org/10.1007/s10854-017-7276-9

    Article  CAS  Google Scholar 

  7. P.W. Anderson,  Theory of superexchange interaction. Phys. Rev. (1950). https://doi.org/10.1103/PhysRev.79.350

    Article  Google Scholar 

  8. P.W. Anderson, B.T. Laboratories, H. Hasegawa, Considerations on double exchange. Phys. Rev. 100(2), 675–681 (1955). https://doi.org/10.1103/PhysRev.100.675

    Article  CAS  Google Scholar 

  9. G. Venkataiah, V. Prasad, P. Venugopal Reddy, Influence of A-site cation mismatch on structural, magnetic and electrical properties of lanthanum manganites. J. Alloys Compd. 429, 1–2 (2007). https://doi.org/10.1016/j.jallcom.2006.03.08

    Article  CAS  Google Scholar 

  10. N. Nirupam, S. Vadnala, A. Agrawal, S.R. Vanjari, S.G. Singh, Thermal and optoelectrical analysis of La0.7S0.3MnO3 thin film thermistor in 8–12 µm range for uncooled microbolometer application, Electron Device Kolkata Conference, (2018), http://doi:978-1-5386-6415-5/18

  11. J. Guo, H. Zhang, Y. Li, S. Yang, J. Li, Q. Chen, Effect of La-site substitution on the magnetoelectric transport properties of La0.7Ca0.3MnO3 polycrystalline ceramics. Ceram. Int. 48(12), 17425–17432 (2022). https://doi.org/10.1016/j.ceramint.2022.03.006

    Article  CAS  Google Scholar 

  12. S. Daengsakul, C. Mongkolkachit, C. Thomas, S. Siri, I. Thomas, V. Amornkitbamrung, S. Maensiri, A simple thermal decomposition synthesis, magnetic properties, and cytotoxicity of La0.7Sr0.3MnO3 nanoparticles. Appl. Phys. A Mater. Sci. Process. 96(3), 691–699 (2009). https://doi.org/10.1007/s00339-009-5151-0

    Article  CAS  Google Scholar 

  13. H.S. Im, G.B. Chon, S.M. Lee, B.H. Koo, C.G. Lee, M.H. Jung, Preparation and characterization of La0.7AE0.3MnO3 (AE = ca, Sr, Ba): Perovskite structured manganites. J. Magn. Magn. Mater. 310(2), 2668–2670 (2007). https://doi.org/10.1016/J.JMMM.2006.12.002

    Article  CAS  Google Scholar 

  14. X. Yu, H. Li, K. Chu, X. Pu, X. Gu, S. Jin, X. Guan, X. Liu, A comparative study on high TCR and MR of La0.67Ca0.33MnO3 polycrystalline ceramics prepared by solid-state and sol-gel methods. Ceram. Int. 47(10), 13469–13479 (2021). https://doi.org/10.1016/j.ceramint.2021.01.205

    Article  CAS  Google Scholar 

  15. C.A. Taboada-Moreno, F. Sánchez-De, F. Jesús, C.A. Pedro-García, J.A. Cortés-Escobedo, M. Betancourt-Cantera, A.M. Ramírez-Cardona, Bolarín-Miró, Large magnetocaloric effect near to room temperature in Sr doped La0.7Ca0.3MnO3. J. Magn. Magn. Mater. 496, 165887 (2020). https://doi.org/10.1016/j.jmmm.2019.165887

    Article  CAS  Google Scholar 

  16. A.M. Bolarín, F. Sánchez, A. Ponce, E.E. Martínez, Mechanosynthesis of lanthanum manganite. Mater. Sci. Eng. A (2007). https://doi.org/10.1016/j.msea.2006.12.062

    Article  Google Scholar 

  17. A.M. Bolarín-Miró, C.A. Taboada-Moreno, C.A. Cortés-Escobedo, O. Rosales-González, G. Torres-Villaseñor, F. Sánchez-De, Jesús, Effect of high-energy ball milling on the magnetocaloric properties of La0.7Ca0.2Sr0.1MnO3. Appl. Phys. A Mater. Sci. Process. 126(5), 369 (2020)

    Article  Google Scholar 

  18. S. Liu, B. Guillet, A. Aryan, C. Adamo, C. Fur, J.M. Routoure, F. Lemarié, D.G. Schlom, L. Méchin, La0.7Sr0.3MnO3 suspended microbridges for uncooled bolometers made using reactive ion etching of the silicon substrates. Microelectron. Eng. 111, 101–104 (2013). https://doi.org/10.1016/j.mee.2013.02.024

    Article  CAS  Google Scholar 

  19. J. Kim, A.M. Grishin, H.H. Radamson, Properties of La0.75Sr0.25MnO3 films grown on Si substrate with Si1 – xGex and Si1 – yCy buffer layers. Thin Solid Films 515, 411–415 (2006)

    Article  CAS  Google Scholar 

  20. Y. Sun, M.B. Salamon, W. Tong, Y. Zhang, Magnetism, electronic transport, and colossal magnetoresistance of (La0.7–xGdx)Sr0.3MnO3 (0 ≤ x ≤ 0.6). Phys. Rev. B Condens. Matter Mater. Phys. 66(9), 944141–944146 (2002). https://doi.org/10.1103/PhysRevB.66.094414

    Article  CAS  Google Scholar 

  21. J.B. Yang, M.S. Kim, T.F. Creel, H. Zhao, X.G. Chen, W.B. Yelon, W.J. James, Structural, magnetic and transport properties of B-site substituted perovskite La0.7Sr0.3MnO3, Perovskite Materials-Synthesis, Characterization, Properties, and Applications, Chap. Perovskite Mater. 8, 261–280 (2016). https://doi.org/10.5772/61770

    Article  CAS  Google Scholar 

  22. Y. Li, Y. Li, J. Li, C. Wang, Q. Chen, H. Zhang, Effect of Fe substitution on temperature coefficient of resistance and magnetoresistance of La0.67Ca0.33MnO3 polycrystalline ceramics. Ceram. Int. 48(6), 8169–8176 (2022). https://doi.org/10.1016/j.ceramint.2021.12.019

    Article  CAS  Google Scholar 

  23. Y. Li, J. Li, Q. Chen, H. Zhang, X. Liu, Q. Chen, Enhanced temperature coefficient of resistance and magnetoresistance of Co-doped La0.67Ca0.33MnO3 polycrystalline ceramics. Ceram. Int. 48(1), 407–414 (2022). https://doi.org/10.1016/j.ceramint.2021.09.116

    Article  CAS  Google Scholar 

  24. K.H. Dahmen, I.S. Chuprakov, E.S. Gillman, M.M. Li, Preparation and magnetoresistance of lanthanum manganites and silver chalcogenide thin films. MRS Online Proceedings Libr. 547, 39 (1999)

    Article  CAS  Google Scholar 

  25. A. Pal, B.S. Nagaraja, K.J. Rachana, K.V. Supriya, D. Kekuda, A. Rao, C.R. Li, Y.K. Kuo, Enhancement of temperature coefficient of resistance (TCR) and magnetoresistance (MR) of La0.67–xRExCa0.33MnO3 (x = 0, 0.1; RE = gd, nd, Sm) system via rare-earth substitution. Mater. Res. Express. 7(3), 036102 (2020). https://doi.org/10.1088/2053-1591/ab7c20

    Article  CAS  Google Scholar 

  26. J. Li, Q. Chen, S. Yang, K. Yan, H. Zhang, X. Liu, Electrical transport properties and enhanced broad-temperature-range low field magnetoresistance in LCMO ceramics by Sm2O3 adding. J. Alloys Compd. 790, 240–247 (2019). https://doi.org/10.1016/j.jallcom.2019.03.169

    Article  CAS  Google Scholar 

  27. K. Navin, R. Kurchania, A comparative study of the structural, magnetic transport and electrochemical properties of La0.7Sr0.3MnO3 synthesized by different chemical routes. Appl. Phys. A Mater. Sci. Process. 126(2), 100 (2020). https://doi.org/10.1016/j.ceramint.2021.02.160

    Article  CAS  Google Scholar 

  28. H. Zhao, X.G. Chen, J.Z. Wei, H.L. Du, J.Z. Han, C.S. Wang, S.Q. Liu, Y. Zhang, Y.C. Yang, Competing magnetic interactions in Co-doped La0.7Sr0.3MnO3. IEEE Trans. Magn. 51(11), 1–5 (2015). https://doi.org/10.1109/TMAG.2015.2443154

    Article  CAS  Google Scholar 

  29. K. Yan, L. Shen, R. Fan, N. Bao, Tailoring the electromagnetic properties of perovskite La0.7Sr0.3MnO3 ceramics by Co doping. J. Mater. Sci. 56, 10183–10190 (2021). https://doi.org/10.1007/s10853-021-05813-5

    Article  CAS  Google Scholar 

  30. N.X. Phuc, L.V. Bau, N.V. Khiem, L.H. Son, D.N.H. Nam, Magnetic and transport properties of La0.7Sr0.3Co1–yMnyO3 - no double exchange between Mn and Co. Phys. B Condens. Matter. 327, 177–182 (2003). https://doi.org/10.1016/S0921-4526(02)01721-0

    Article  CAS  Google Scholar 

  31. L.T.T. Ngan, N.T. Dang, N.X. Phuc, L.V. Bau, N.V. Dang, D.H. Manh, P.H. Nam, L.H. Nguyen, P.T. Phong, Magnetic and transport behaviors of Co substitution in La0.7Sr0.3MnO3 perovskite. J. Alloys Compd. 911, 164967 (2022). https://doi.org/10.1016/j.jallcom.2022.164967

    Article  CAS  Google Scholar 

  32. K. McBride, N. Partridge, S. Bennington-Gray, S. Felton, L. Stella, D. Poulidi, Synthesis, characterisation and study of magnetocaloric effects (enhanced and reduced) in manganate perovskites. Mater. Res. Bull. 88, 69–77 (2017). https://doi.org/10.1016/j.materresbull.2016.12.019

    Article  CAS  Google Scholar 

  33. Y. Liu, T. Sun, F. Ji, G. Dong, S. Zhang, X. Yu, Z. Li, Q. Chen, X. Liu, Influence of Ag doping on electrical and magnetic properties of La0.67Ca0.33MnO3 polycrystalline ceramics. Ceram. Int. 45, 11006–11012 (2019). https://doi.org/10.1016/j.ceramint.2019.02.184

    Article  CAS  Google Scholar 

  34. H. Hasegawa, T. Sawada, On the electrical properties of compound semiconductor interfaces in metal/insulator/ semiconductor structures and the possible origin of interface states. Thin Solid Films. 103, 1–3 (1983). https://doi.org/10.1016/0040-6090(83)90430-3

    Article  Google Scholar 

  35. D. Varshney, D. Choudhary, M.W. Shaikh, E. Khan, Electrical resistivity behaviour of sodium substituted manganites: Electron-phonon, electron-electron and electron-magnon interactions. Eur. Phys. J. B 76(2), 327–338 (2010). https://doi.org/10.1140/epjb/e2010-00192-4

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support of the Humanities, Science and Technology National Council of Mexico (CONAHCyT) under grant CF-2023-I-769. I. González-García thanks CONAHCyT for the scholarship granted to carry out her postgraduate studies.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

IGG: Conceptualization, methodology, validation, writing, reviewing and editing. AMBM: Conceptualization, formal analysis, methodology, validation, writing. JCAE: Material preparation, data collection and analysis. ORG: Data collection, materials characterization and data analysis CACE: Validation and editing. FSDJ: Conceptualization, formal analysis, methodology, validation, writing and editing.

Corresponding author

Correspondence to F. Sánchez-De Jesús.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

González-García, I., Bolarín-Miró, A.M., Rosales-González, O. et al. Effect of cobalt on the magnetic properties and temperature coefficient of resistance for lanthanum-strontium manganite. J Mater Sci: Mater Electron 34, 1979 (2023). https://doi.org/10.1007/s10854-023-11428-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11428-0

Navigation