Skip to main content
Log in

Low-temperature sintering and microwave dielectric properties of ZnGa2–xO4–1.5x ceramics with added B2O3

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, ZnGa2–xO4–1.5x (0.0 ≤ x ≤ 0.15) ceramics were synthesized by a solid-state reaction method. ZnGa2O4 ceramic that is sintered at 1300 °C/3 h exhibits good microwave dielectric properties with εr of 11.06, Q × f of 74,730 GHz, and τf of − 69.7 ppm/°C. However, it cannot be fully densified at temperatures lower than 960 °C, even when a large amount of B2O3 is added, which seriously inhibits its application in the LTCC (low temperature cofired ceramic) field. Therefore, adding B2O3 to Ga2O3-deficient ZnGa2O4 ceramics is proposed to decrease the sintering temperature to below 960 °C. Owing to the dual effect of the B2O3-rich and ZnO-B2O3 related liquid phases, ceramics with added B2O3 (≥ 20 mol%) were found to sinter well at 950 °C, and good microwave dielectric properties were also achieved. In particular, 25 mol% B2O3 added to ZnGa1.95O3.925 ceramic sintered at 950 °C showed promising microwave dielectric properties for 5 G/6 G technologies without reaction with a silver electrode: εr = 9.19, Q × f = 37,337 GHz, and τf = − 58.3 ppm/°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. M.T. Sebastian, H. Jantunen, Low loss dielectric materials for LTCC applications: a review. Int. Mater. Rev. 53, 57–90 (2008). https://doi.org/10.1179/174328008X277524

    Article  CAS  Google Scholar 

  2. T.A. Midford, J.J. Wooldridge, R.L. Sturdivant, The evolution of packages for monolithic microwave and millimeter-wave circuits. IEEE Trans. Antennas Propag. 43, 983–991 (1995). https://doi.org/10.1109/8.410215

    Article  Google Scholar 

  3. H.W. Liang, H.L. Barnes, J. Laskar, D. Estreich, Application of digital PGA technology to K-band microcircuit and microwave subsystem packages. IEEE Trans. Microwave Theory Tech. 48, 2644–2651 (2000). https://doi.org/10.1109/22.899025

    Article  Google Scholar 

  4. M.D. Hill, D.B. Cruickshank, I.A. MacFarlane, Perspective on ceramic materials for 5G wireless communication systems. Appl. Phys. Lett. 118, 120501 (2021). https://doi.org/10.1063/5.0036058

    Article  CAS  Google Scholar 

  5. M. Anab, M.I. Khattak, S.M. Owais, A.A. Khattak, A. Sultan, Design and analysis of millimeter wave dielectric resonator antenna for 5G wireless communication systems. Prog. Electromagn. Res. 98, 239–255 (2020). https://doi.org/10.2528/PIERC19102404

    Article  CAS  Google Scholar 

  6. X.-H. Ma, S.-H. Kweon, S. Nahm, C.-Y. Kang, S.-J. Yoon, Y.-S. Kim, Synthesis and microwave dielectric properties of Bi2Ge3O9 ceramics for application as advanced ceramic substrate. J. Eur. Ceram. Soc. 37, 605–610 (2017). https://doi.org/10.1016/j.jeurceramsoc.2016.08.037

    Article  CAS  Google Scholar 

  7. B. Liu, K. Sha, M.F. Zhou, K.X. Song, Y.H. Huang, C.C. Hu, Novel low-εr MGa2O4 (M = Ca, Sr) microwave dielectric ceramics for 5 G antenna applications at the Sub-6 GHz band. J. Eur. Ceram. Soc. 41, 5170–5175 (2021). https://doi.org/10.1016/j.jeurceramsoc.2021.04.033

    Article  CAS  Google Scholar 

  8. G.G. Yao, J.X. Yan, J.J. Tan, C.J. Pei, P. Liu, H.W. Zhang, D.W. Wan, Structure, chemical bond and microwave dielectric characteristics of novel Li3Mg4NbO8 ceramics. J. Eur. Ceram. Soc. 41, 6490–6494 (2021). https://doi.org/10.1016/j.jeurceramsoc.2021.06.029

    Article  CAS  Google Scholar 

  9. Y.H. Zhang, J.J. Sun, N. Dai, Z.C. Wu, H.T. Wu, C.H. Yang, Crystal structure, infrared spectra and microwave dielectric properties of novel extra low-temperature fired Eu2Zr3(MoO4)9 ceramics. J. Eur. Ceram. Soc. 39, 1127–1131 (2019). https://doi.org/10.1016/j.jeurceramsoc.2018.12.042

    Article  CAS  Google Scholar 

  10. Y. Yang, M.S. Ma, Y.Z. Wang, Z.F. Liu, F.Q. Zhang, Y.X. Li, Low-temperature sintering of ZnAl2O4 ceramics with 4CuO–TiO2–2Nb2O5 composite oxide sintering aid. Ferroelectrics. 586, 190–198 (2022). https://doi.org/10.1080/00150193.2021.2014270

    Article  CAS  Google Scholar 

  11. G.G. Yao, J.Y. Zhao, Y. Lu, H.K. Liu, C.J. Pei, Q. Ding, M. Chen, Y.M. Zhang, D. Li, F. Wang, Microwave dielectric properties of Li3TiO3F oxyfluorides ceramics. Crystals. 13, 897 (2023). https://doi.org/10.3390/cryst13060897

    Article  CAS  Google Scholar 

  12. X.-H. Ma, S.-H. Kweon, S. Nahm, C.-Y. Kang, S.-J. Yoon, Y.-S. Kim, Low temperature firing and microwave dielectric properties of Bi4–xGe3O12–1.5x ceramics. Ceram. Int. 43, 2801–2806 (2017). https://doi.org/10.1016/j.ceramint.2016.11.121

    Article  CAS  Google Scholar 

  13. B. Liu, C.C. Hu, Y.H. Huang, H.B. Bafrooei, K.X. Song, Crystal structure, infrared reflectivity spectra and microwave dielectric properties of CaAl2O4 ceramics with low permittivity. J. Alloys. Compd. 791, 1033–1037 (2019). https://doi.org/10.1016/j.jallcom.2019.03.369

    Article  CAS  Google Scholar 

  14. X.K. Lan, J. Li, Z.Y. Zou, M.Q. Xie, G.F. Fan, W.Z. Lu, W. Lei, Improved sinterability and microwave dielectric properties of [Zn0.5Ti0.5]3+-doped ZnAl2O4 spinel solid solution. J. Am. Ceram. Soc. 102, 5952–5957 (2019). https://doi.org/10.1111/jace.16453

    Article  CAS  Google Scholar 

  15. X.C. Lu, B. Quan, K.L. Zheng, P. Chu, J. Wang, G.X. Shen, Q.T. Zhang, F. Xu, Sc modification induced short-range cation ordering and high microwave dielectric performance in ZnGa2O4 spinel ceramics. J. Alloys Compd. 873, 159758 (2021). https://doi.org/10.1016/j.jallcom.2021.159758

    Article  CAS  Google Scholar 

  16. Y. Xiong, H.Y. Xie, Z.G. Rao, L.J. Liu, Z.F. Wang, C.C. Li, Compositional modulation in ZnGa2O4 via Zn2+/Ge4+ co-doping to simultaneously lower sintering temperature and improve microwave dielectric properties. J. Adv. Ceram. 10, 1360–1370 (2021). https://doi.org/10.1007/s40145-021-0511-0

    Article  CAS  Google Scholar 

  17. X.C. Lu, W.J. Bian, Y.Y. Li, H.K. Zhu, Z.X. Fu, Q.T. Zhang, Cation distributions and microwave dielectric properties of Cu-substituted ZnGa2O4 spinel ceramics. Ceram. Int. 43, 13839–13844 (2017). https://doi.org/10.1016/j.ceramint.2017.07.104

    Article  CAS  Google Scholar 

  18. X.C. Lu, W.J. Bian, C.F. Min, Z.X. Fu, Q.T. Zhang, H.K. Zhu, Cation distribution of high-performance Mn-substituted ZnGa2O4 microwave dielectric ceramics. Ceram. Int. 44, 10028–10034 (2018). https://doi.org/10.1016/j.ceramint.2018.02.041

    Article  CAS  Google Scholar 

  19. X.-H. Ma, S.-H. Kweon, M. Im, S. Nahm, Low-temperature sintering and microwave dielectric properties of B2O3-added ZnO-deficient Zn2GeO4 ceramics for advanced substrate application. J. Eur. Ceram. Soc. 38, 4682–4688 (2018). https://doi.org/10.1016/j.jeurceramsoc.2018.06.018

    Article  CAS  Google Scholar 

  20. R.M. German, P. Suri, S.J. Park, Review: liquid phase sintering. J. Mater. Sci. 44, 1–39 (2009). https://doi.org/10.1007/s10853-008-3008-0

    Article  CAS  Google Scholar 

  21. J.-S. Kim, N.-H. Nguyen, J.-B. Lim, D.-S. Paik, S. Nahm, J.-H. Paik, J.-H. Kim, H.-J. Lee, Low-temperature sintering and microwave dielectric properties of the Zn2SiO4 ceramics. J. Am. Ceram. Soc. 91, 671–674 (2008). https://doi.org/10.1111/j.1551-2916.2007.02187.x

    Article  CAS  Google Scholar 

  22. S.-H. Kweon, M.-R. Joung, J.-S. Kim, B.-Y. Kim, S. Nahm, J.-H. Paik, Y.-S. Kim, T.-H. Sung, Low temperature sintering and microwave dielectric properties of B2O3-added LiAlSiO4 ceramics. J. Am. Ceram. Soc. 94, 1995–1998 (2011). https://doi.org/10.1111/j.1551-2916.2011.04619.x

    Article  CAS  Google Scholar 

  23. Y. Masubuchi, D. Miyamoto, M. Higuchi, B2O3 as a new sintering additive for perovskite-type SrTaO2N oxynitride ceramics. J. Asian Ceram. Soc. 10, 158–164 (2022). https://doi.org/10.1080/21870764.2022.2027664

    Article  Google Scholar 

  24. F. Izumi, K. Momma, Three-dimensional visualization in powder diffraction. Solid State Phenom. 130, 15–20 (2007). https://doi.org/10.4028/www.scientific.net/SSP.130.15

    Article  CAS  Google Scholar 

  25. B.W. Hakki, P.D. Coleman, A dielectric resonator method of measuring inductive capacities in the millimeter range. IRE Trans. Microw. Theory Technol. 8, 402–410 (1960). https://doi.org/10.1109/TMTT.1960.1124749

    Article  Google Scholar 

  26. W.E. Courtney, Analysis and evaluation of a method of measuring the complex permittivity and permeability of microwave insulators. IEEE Trans. Microw. Theory Technol. 18, 476–485 (1970). https://doi.org/10.1109/TMTT.1970.1127271

    Article  Google Scholar 

  27. J.-R. Kim, D.-W. Kim, I.-S. Cho, B.S. Kim, J.-S. An, K.S. Hong, Low temperature sintering and microwave dielectric properties of Ba3Ti5Nb6O28 with ZnO–B2O3 glass additions for LTCC applications. J. Eur. Ceram. Soc. 27, 3075–3079 (2007). https://doi.org/10.1016/j.jeurceramsoc.2006.11.036

    Article  CAS  Google Scholar 

  28. H.I. Kang, J.S. Kim, M. Lee, J.H. Bahng, J.C. Choi, H.L. Park, G.C. Kim, T.W. Kim, Y.H. Hwang, S.I. Mho, S.H. Eom, Y.S. Yu, H.J. Song, W.T. Kim, Tunable color emission of ZnGa2O4:Si4+ phosphors with enhanced brightness due to donor formation. Solid State Commun. 122, 633–636 (2002). https://doi.org/10.1016/S0038-1098(02)00235-1

    Article  CAS  Google Scholar 

  29. Y. Iida, M. Okazaki, Characterization of zinc gallate phosphors. Anal. Sci. 17, i1145–i1147 (2001). https://doi.org/10.14891/analscisp.17icas.0.i1145.0

  30. X.-H. Ma, S.-H. Kweon, S. Nahm, C.-Y. Kang, S.-J. Yoon, Y.-S. Kim, W.-S. Yoon, Microstructural and microwave dielectric properties of Bi12GeO20 and Bi2O3-deficient Bi12GeO20 ceramics. J. Am. Ceram. Soc. 99, 2361–2367 (2016). https://doi.org/10.1111/jace.14240

    Article  CAS  Google Scholar 

  31. M.J. Wu, J.D. Chen, Y.C. Zhang, Effect of B2O3 addition on the microwave dielectric properties of NiTiNb2O8 ceramics. J. Mater. Sci. Mater. Electron. 29, 13132–13137 (2018). https://doi.org/10.1007/s10854-018-9436-y

    Article  CAS  Google Scholar 

  32. H.T. Wu, Q.J. Mei, C.F. Xing, J.X. Bi, Effects of B2O3 addition on sintering behavior and microwave dielectric properties of ixiolite-structure ZnTiNb2O8 ceramics. J. Alloys Compd. 679, 26–31 (2016). https://doi.org/10.1016/j.jallcom.2016.04.046

    Article  CAS  Google Scholar 

  33. L. Li, W.B. Hong, X.J. Yan, X.M. Chen, Preparation and microwave dielectric properties of B2O3 bulk. Int. J. Appl. Ceram. Tec. 16, 2047–2052 (2019). https://doi.org/10.1111/ijac.13175

    Article  CAS  Google Scholar 

Download references

Funding

We would like to acknowledge the financial support from Shandong Provincial Natural Science Foundation, China [ZR2020QE039]; Xingyi Ma acknowledges the grants from Natural Science Foundations of Shenzhen (JCYJ20210324132815037, GXWD20220818171934001) and Guangdong (2022A1515220158), the Fundamental Research Funds for the Central Universities (Grant No. HIT.OCEF.2022040), and Zhujiang Talents Programme (2021QN02Y120).

Author information

Authors and Affiliations

Authors

Contributions

JJX: data curation, formal analysis, investigation, methodology, validation and writing of the original draft. XHM: project administration, conceptualisation, supervision, writing, review and editing. ZLZ: formal analysis, investigation and writing. SN: supervision. SLZ: review. XYM: project administration. FG: supervision.

Corresponding authors

Correspondence to Xing-Hua Ma or Zhenlu Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4882 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, J., Ma, XH., Zhang, Z. et al. Low-temperature sintering and microwave dielectric properties of ZnGa2–xO4–1.5x ceramics with added B2O3. J Mater Sci: Mater Electron 34, 1941 (2023). https://doi.org/10.1007/s10854-023-11331-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11331-8

Navigation