Skip to main content
Log in

Starch/methyl cellulose-based microsupercapacitors for on-chip applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Micron thin films and microsupercapacitors based on polyvinyl alcohol, starch, methyl cellulose, and nickel acetate have been fabricated using the one-step formation of laser-induced graphene. Surface finishing of films and decomposition of nickel acetate to nickel oxide have been achieved with the help of CO2 laser. The optical studies of thin films and microsupercapacitors have been conducted, which are highly transparent in the UV–visible regime. There is no need of binders, current collectors, or separators in interdigitated microsupercapacitors. Starch-based microsupercapacitors (PSM) have superior electrochemical performance and stability than methyl cellulose (PMM) in the presence of 6-M KOH electrolyte. The maximum capacitance of PSM is 28.89 µF cm−2 in 6-M KOH at the scan rate of 1 mV s−1 from cyclic voltammetry. The specific energy density is 93.75 × 10−6 µWh cm−2 and the power density is 0.12 µW cm−2. The PMM has a specific capacitance of 2.5 nF cm−2 when compared to PSM of 0.52 µF cm−2 without electrolyte. The cycle life of PSM is 2500 cycles which shows its robustness. The performance of the microsupercapacitors is better than the other gate dielectric materials used in transistors and in the range for integration of energy storage devices in on-chip electronic and photonic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. F. Bu, W. Zhou, Y. Xu, Y. Du, C. Guan, W. Huang, Npj Flex. Electron. 4, 31 (2020)

    Article  Google Scholar 

  2. X. Jiang, X. Zhao, Y. Sun, Y. He, L. Jiang, Chem. Eng. J. 462, 142209 (2023)

    Article  CAS  Google Scholar 

  3. P. Huang, C. Lethien, S. Pinaud, K. Brousse, R. Laloo, V. Turq, M. Respaud, A. Demortière, B. Daffos, P.L. Taberna, B. Chaudret, Y. Gogotsi, P. Simon, Science. 351, 691 (2016)

    Article  CAS  Google Scholar 

  4. R. Nigam, R. Kumar, K.K. Kar, in Handbook of Nanocomposite Supercapacitor Materials IV, ed. By K.K. Kar (Springer, Cham, 2023), pp. 89–122

  5. K.H. Dinh, P. Roussel, C. Lethien, ACS Omega. 8, 8977 (2023)

    Article  CAS  Google Scholar 

  6. N.A. Kyeremateng, T. Brousse, D. Pech, Nat. Nanotechnol. 12, 7 (2017)

    Article  CAS  Google Scholar 

  7. H. Liu, Z. Sun, Y. Chen, W. Zhang, X. Chen, C.-P. Wong, ACS Nano. 16, 10088 (2022)

    Article  CAS  Google Scholar 

  8. Y. Wang, Y. Zhao, L. Qu, J. Energy Chem. 59, 642–665 (2021)

    Article  CAS  Google Scholar 

  9. G.F. Hawes, P. Verma, M. Uceda, G. Karimi, B.S. Noremberg, M.A. Pope, ACS Appl. Mater. Interfac. 15, 10570 (2023)

    Article  CAS  Google Scholar 

  10. Z. Peng, R. Ye, J.A. Mann, D. Zakhidov, Y. Li, P.R. Smalley, J. Lin, J.M. Tour, ACS Nano 9, 5868–5875 (2015)

    Article  CAS  Google Scholar 

  11. Y. Chyan, R. Ye, Y. Li, S.P. Singh, C.J. Arnusch, J.M. Tour, ACS Nano. 12, 2176 (2018)

    Article  CAS  Google Scholar 

  12. W. Zhang, Y. Lei, F. Ming, Q. Jiang, P.M.F.J. Costa, H.N. Alshareef, Adv. Energy Mater. 8, 1801840 (2018)

    Article  Google Scholar 

  13. H. Liu, Y. Xie, J. Li, Z. Sun, J. Liu, K. Moon, L. Lu, Y. Chen, Y. Tang, X. Chen, C.-P. Wong, Chem. Eng. J. 404, 126375 (2021)

    Article  CAS  Google Scholar 

  14. W.B. Han, J.H. Lee, J. Shin, S. Hwang, Adv. Mater. 32, 2002211 (2020)

    Article  CAS  Google Scholar 

  15. E.A. Van Etten, E.S. Ximenes, L.T. Tarasconi, I.T.S. Garcia, M.M.C. Forte, H. Boudinov, Thin Solid Films. 568, 111 (2014)

    Article  Google Scholar 

  16. Y. Zhai, J.-Q. Yang, Y. Zhou, J.-Y. Mao, Y. Ren, V.A.L. Roy, S.-T. Han, Mater. Horiz. 5, 641 (2018)

    Article  CAS  Google Scholar 

  17. B. Jacob, S.W. Ng, D.T. Wang, in Memory Systems-Cache, DRAM, Disk (Elsevier, 2008), pp. 1–54

  18. H.N. Fard, G.B. Pour, M.N. Sarvi, P. Esmaili, Ionics (Kiel). 25, 2951 (2019)

    Article  CAS  Google Scholar 

  19. R. Nigam, K.K. Kar, Langmuir. 38, 12235 (2022)

    Article  CAS  Google Scholar 

  20. N.H. Zakaria, N. Muhammad, M.M.A.B. Abdullah, IOP Conf. Ser. Mater. Sci. Eng. 209, 012087 (2017)

    Article  Google Scholar 

  21. P. Nasatto, F. Pignon, J. Silveira, M. Duarte, M. Noseda, M. Rinaudo, Polym. (Basel). 7, 777 (2015)

    Article  CAS  Google Scholar 

  22. S. Alipoori, M.M. Torkzadeh, M.H.M. Moghadam, S. Mazinani, S.H. Aboutalebi, F. Sharif, Polym. (Guildf). 184, 121908 (2019)

    Article  CAS  Google Scholar 

  23. M.E. Rodriguez-Garcia, M.A. Hernandez-Landaverde, J.M. Delgado, C.F. Ramirez-Gutierrez, M. Ramirez-Cardona, B.M. Millan-Malo, S.M. Londoño-Restrepo, Curr. Opin. Food Sci. 37, 107–111 (2021)

    Article  CAS  Google Scholar 

  24. K. Das, D. Ray, N.R. Bandyopadhyay, A. Gupta, S. Sengupta, S. Sahoo, A. Mohanty, M. Misra, Ind. Eng. Chem. Res. 49, 2176 (2010)

    Article  CAS  Google Scholar 

  25. N.A. Shamsuri, S.N.A. Zaine, Y. Mohamed, Yusof, M.F. Shukur, J. Appl. Polym. Sci. 139, 52076 (2022)

    Article  CAS  Google Scholar 

  26. J.L. Garcia-Miquel, Q. Zhang, S.J. Allen, A. Rougier, A. Blyr, H.O. Davies, A.C. Jones, T.J. Leedham, P.A. Williams, S.A. Impey, Thin Solid Films. 424, 165 (2003)

    Article  CAS  Google Scholar 

  27. T. Sheela, R.F. Bhajantri, V. Ravindrachary, S.G. Rathod, P.K. Pujari, B. Poojary, R. Somashekar, Radiat. Phys. Chem. 103, 45 (2014)

    Article  CAS  Google Scholar 

  28. Y. Shi, D. Xiong, J. Li, K. Wang, N. Wang, RSC Adv. 7, 1045 (2017)

    Article  CAS  Google Scholar 

  29. V. Vuiblet, T.T. Nguyen, A. Wynckel, M. Fere, L. Van-Gulick, V. Untereiner, P. Birembaut, P. Rieu, O. Piot, Analyst. 140, 7382 (2015)

    Article  CAS  Google Scholar 

  30. L. Bonetti, L. De Nardo, F. Variola, S. Farè, Mater. Lett. 274, 128011 (2020)

    Article  CAS  Google Scholar 

  31. S.-H. Lee, K.-Y. Kim, J.-R. Yoon, NPG Asia Mater. 12, 28 (2020)

    Article  CAS  Google Scholar 

  32. G. Anandha Babu, G. Ravi, T. Mahalingam, M. Kumaresavanji, Y. Hayakawa, Dalton Trans. 44, 4485 (2015)

    Article  CAS  Google Scholar 

  33. H.S. Ragab, Abd El-Kader. Phys. Scr. 87, 025602 (2013)

    Article  CAS  Google Scholar 

  34. Y. Thaver, S.O. Oseni, and G. Tessema Mola, Solar Energy 214, 11–18 (2021)

    Article  CAS  Google Scholar 

  35. J. Adhikary, P. Chakraborty, B. Das, A. Datta, S.K. Dash, S. Roy, J.-W. Chen, T. Chattopadhyay, RSC Adv. 5, 35917 (2015)

    Article  CAS  Google Scholar 

  36. S. Kadian, G. Manik, A. Kalkal, M. Singh, R.P. Chauhan, Nanotechnology. 30, 435704 (2019)

    Article  CAS  Google Scholar 

  37. Y. Wang, L. Sun, D. Xiao, H. Du, Z. Yang, X. Wang, L. Tu, C. Zhao, F. Hu, B. Lu, ACS Appl. Mater. Interfac. 12, 43864 (2020)

    Article  CAS  Google Scholar 

  38. Y. He, X. Zhang, Y. Zhong, X. Li, L. Wu, H. Liu, H. Gou, G. Wang, J. Coll. Interfac. Sci. 554, 650 (2019)

    Article  CAS  Google Scholar 

  39. A. Ramadoss, K.-Y. Yoon, M.-J. Kwak, S.-I. Kim, S.-T. Ryu, J.-H. Jang, J. Power Sources. 337, 159 (2017)

    Article  CAS  Google Scholar 

  40. P. Xu, J. Kang, J.-B. Choi, J. Suhr, J. Yu, F. Li, J.-H. Byun, B.-S. Kim, T.-W. Chou, ACS Nano. 8, 9437 (2014)

    Article  CAS  Google Scholar 

  41. I. Popoola, M. Gondal, L. Oloore, A. Popoola, J. AlGhamdi, Electrochim. Acta. 332, 135536 (2020)

    Article  CAS  Google Scholar 

  42. T. Ghomian, S. Mehraeen, Energy. 178, 33 (2019)

    Article  Google Scholar 

  43. D. Pankratov, E. González-Arribas, Z. Blum, S. Shleev, Electroanalysis. 28, 1250 (2016)

    Article  CAS  Google Scholar 

  44. M. Mastragostino, C. Arbizzani, F. Soavi, J. Power Sources. 97–98, 812 (2001)

    Article  Google Scholar 

  45. Y. Song, T.-Y. Liu, X.-X. Xu, D.-Y. Feng, Y. Li, X.-X. Liu, Adv. Funct. Mater. 25, 4626 (2015)

    Article  CAS  Google Scholar 

  46. N. Liu, Y. Gao, Small. 13, 1701989 (2017)

    Article  Google Scholar 

  47. N. Kurra, M.K. Hota, H.N. Alshareef, Nano Energy. 13, 500 (2015)

    Article  CAS  Google Scholar 

  48. N. Hu, X. Dong, X. He, J.F. Browning, D.W. Schaefer, Corros. Sci. 97, 17 (2015)

    Article  CAS  Google Scholar 

  49. C.D. Dieleman, P.J. Denissen, S.J. Garcia, Adv. Mater. Interfac. 5, 1800176 (2018)

    Article  Google Scholar 

  50. M. Yadav, M. Kumar, T. Tiwari, N. Srivastava, Ionics (Kiel). 23, 2871 (2017)

    Article  CAS  Google Scholar 

  51. N.O. Laschuk, E.B. Easton, O.V. Zenkina, RSC Adv. 11, 27925 (2021)

    Article  CAS  Google Scholar 

  52. B. Wang, W. Huang, L. Chi, M. Al-Hashimi, T.J. Marks, A. Facchetti, Chem. Rev. 118, 5690 (2018)

    Article  CAS  Google Scholar 

  53. G.D. Alley, in G-MTT 1970 International Microwave Symposium (IEEE, 1970), pp. 7–13

  54. M.P. Aleksandrova, S.K. Andreev, IEEE Sens. J. 22, 10126 (2022)

    Article  CAS  Google Scholar 

  55. J. Devi, P. Datta, J. Electron. Mater. 47, 3529 (2018)

    Article  CAS  Google Scholar 

  56. W. Hilber, H. Enser, M. Knoll, C. Offenzeller, B. Jakoby, IEEE Sens. J. 21, 12444 (2021)

    Article  CAS  Google Scholar 

  57. L. Feng, W. Tang, X. Xu, Q. Cui, X. Guo, IEEE Electron Device Lett. 34, 129 (2013)

    Article  Google Scholar 

  58. U. Zschieschang, H. Klauk, Org. Electron. 25, 340 (2015)

    Article  CAS  Google Scholar 

  59. G. Park, H. Yang, J.H. Lee, G. Lee, J. Kwak, U. Jeong, Adv. Mater. Interfac. 6, 1900588 (2019)

    Article  Google Scholar 

  60. Y. Xia, G. He, W. Wang, Q. Gao, Y. Liu, IEEE Trans. Electron. Devices. 68, 2522 (2021)

    Article  CAS  Google Scholar 

  61. H. Liu, J. Sun, Q. Tang, Q. Wan, J. Phys. Chem. C 114, 12316 (2010)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the suggestions of Dr. Rajesh Kumar (Ramanujan fellow, DST/SERB, India) and support of Prof. Janakarajan Ramkumar, Department of Mechanical Engineering, IIT Kanpur regarding laser facilities and discussion. Prof. Dattatraya H. Dethe, Department of Chemistry, IIT Kanpur support regarding NMR spectroscopy is cited.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

RN contributed to Conceptualization, Methodology, Validation, Investigation, Writing of the original draft and editing, and Visualization. KKK contributed to Resources, Review, Visualization, and Supervision. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Ravi Nigam.

Ethics declarations

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nigam, R., Kar, K.K. Starch/methyl cellulose-based microsupercapacitors for on-chip applications. J Mater Sci: Mater Electron 34, 1927 (2023). https://doi.org/10.1007/s10854-023-11296-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11296-8

Navigation