Skip to main content
Log in

Investigations on RF sputtered TiN thin films and Cu/TiO2/TiN devices for resistive switching memory applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The growth of titanium nitride (TiN) thin films with bulk TiN conductivity for inert electrode applications remains a challenge, owing to various microstructural and compositional properties. Here, we report the fabrication of TiN thin films using optimised RF magnetron sputtering, where deposition conditions were tailored to achieve metal like electrical conductivity in TiN films. The TiN thin films deposited at 750 °C and in pure nitrogen ambient, revealed the minimum resistivity of ~ 26 µΩ cm, matching bulk TiN and suitable for electrode applications. The TiN thin films were used as bottom electrode to fabricate Cu/TiO2/TiN devices, which demonstrated repeatable non-volatile bipolar resistive switching characteristics with good endurance, retention, and multibit capability. The resistive switching and current conduction mechanisms of the device were explained considering Cu atom constituting filamentary switching, caused due to electrochemical metallization. The switching parameters and mechanism of TiO2 based devices using TiN bottom electrode were found to be similar to those observed in Pt based RRAM devices, demonstrating TiN films’ capability as an effective substitute for noble metal electrodes. This study may aid in the development of device grade metal like conducting TiN thin films, which are potential alternate to noble metal electrodes for resistive switching memory applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

All data generated during this study are included in this article or in supplementary information files, if any.

References

  1. Q. Xie et al., Improvement of microstructure and tribological properties of titanium nitride films by optimization of substrate bias current. Thin Solid Films 749, 139181 (2022). https://doi.org/10.1016/j.tsf.2022.139181

    Article  CAS  Google Scholar 

  2. A. Ghailane et al., Titanium nitride, TiXN(1–X), coatings deposited by HiPIMS for corrosion resistance and wear protection properties. Appl. Surf. Sci. 574, 151635 (2022). https://doi.org/10.1016/j.apsusc.2021.151635

    Article  CAS  Google Scholar 

  3. R. Gao et al., Epitaxial titanium nitride microwave resonators: structural, chemical, electrical, and microwave properties. Phys. Rev. Mater. 6(3), 036202 (2022). https://doi.org/10.1103/PhysRevMaterials.6.036202

    Article  CAS  Google Scholar 

  4. P. Patsalas, N. Kalfagiannis, S. Kassavetis, Optical properties and plasmonic performance of titanium nitride. Materials (2015). https://doi.org/10.3390/ma8063128

    Article  Google Scholar 

  5. N. Yokoyama, K. Hinode, Y. Homma, LPCVD titanium nitride for ULSIs. J. Electrochem. Soc. 138(1), 190 (1991). https://doi.org/10.1149/1.2085535

    Article  CAS  Google Scholar 

  6. M.C. Lemme et al., Nanoscale TiN metal gate technology for CMOS integration. Microelectron. Eng. 83(4), 1551–1554 (2006). https://doi.org/10.1016/j.mee.2006.01.161

    Article  CAS  Google Scholar 

  7. L. Wang et al., Effect of residual gas on structural, electrical and mechanical properties of niobium films deposited by magnetron sputtering deposition. Mater. Res. Express 5(4), 046410 (2018). https://doi.org/10.1088/2053-1591/aab8c1

    Article  CAS  Google Scholar 

  8. R. Banerjee, R. Chandra, P. Ayyub, Influence of the sputtering gas on the preferred orientation of nanocrystalline titanium nitride thin films. Thin Solid Films 405(1), 64–72 (2002). https://doi.org/10.1016/S0040-6090(01)01705-9

    Article  CAS  Google Scholar 

  9. J. Yang et al., TiN films fabricated by reactive gas pulse sputtering: a hybrid design of multilayered and compositionally graded structures. Appl. Surf. Sci. 389, 255–259 (2016). https://doi.org/10.1016/j.apsusc.2016.07.062

    Article  CAS  Google Scholar 

  10. A. Kehal, N. Saoula, S.-E.-H. Abaidia, C. Nouveau, Effect of Ar/N2 flow ratio on the microstructure and mechanical properties of Ti-Cr-N coatings deposited by DC magnetron sputtering on AISI D2 tool steels. Surf. Coat. Technol. 421, 127444 (2021). https://doi.org/10.1016/j.surfcoat.2021.127444

    Article  CAS  Google Scholar 

  11. H. Guo, W. Chen, Y. Shan, W. Wang, Z. Zhang, J. Jia, Microstructures and properties of titanium nitride films prepared by pulsed laser deposition at different substrate temperature. Appl. Surf. Sci. 357, 473–478 (2015). https://doi.org/10.1016/j.apsusc.2015.09.061

    Article  CAS  Google Scholar 

  12. G. Sjoblom, J. Westlinder, J. Olsson, Investigation of the thermal stability of reactively sputter-deposited TiN MOS gate electrodes. IEEE Trans. Electron Devices 52(10), 2349–2352 (2005). https://doi.org/10.1109/TED.2005.856796

    Article  CAS  Google Scholar 

  13. F. Vaz et al., Influence of nitrogen content on the structural, mechanical and electrical properties of TiN thin films. Surf. Coat. Technol. 191(2), 317–323 (2005). https://doi.org/10.1016/j.surfcoat.2004.01.033

    Article  CAS  Google Scholar 

  14. H. von Seefeld, N.W. Cheung, M. Maenpaa, M.-A. Nicolet, Investigation of titanium-nitride layers for solar-cell contacts. IEEE Trans. Electron Devices 27(4), 873-876, (1980). https://doi.org/10.1109/T-ED.1980.19949

    Article  Google Scholar 

  15. N.K. Ponon et al., Effect of deposition conditions and post deposition anneal on reactively sputtered titanium nitride thin films. Thin Solid Films 578, 31–37 (2015). https://doi.org/10.1016/j.tsf.2015.02.009

    Article  CAS  Google Scholar 

  16. F.-H. Lu, J.-L. Lo, The influences of oxygen impurity contained in nitrogen gas on the annealing of titanium nitride. J. Eur. Ceram. Soc. 22(8), 1367–1374 (2002). https://doi.org/10.1016/S0955-2219(01)00444-7

    Article  Google Scholar 

  17. L. Hultman, J.-E. Sundgren, L.C. Markert, J.E. Greene, Ar and excess N incorporation in epitaxial TiN films grown by reactive bias sputtering in mixed Ar/N2 and pure N2 discharges. J. Vac. Sci. Technol. A 7(3), 1187–1193 (1989). https://doi.org/10.1116/1.576251

    Article  CAS  Google Scholar 

  18. N.D. Cuong, D.-J. Kim, B.-D. Kang, S.-G. Yoon, Effects of nitrogen concentration on structural and electrical properties of titanium nitride for thin-film resistor applications. Electrochem. Solid State Lett. (2006). https://doi.org/10.1149/1.2216592

    Article  Google Scholar 

  19. P. Gu, X. Zhu, J. Li, H. Wu, D. Yang, Influence of substrate and Ar/N2 gas flow ratio on structural, optical and electrical properties of TiN thin films synthetized by DC magnetron sputtering. J. Mater. Sci. Mater. Electron. 29(12), 9893–9900 (2018). https://doi.org/10.1007/s10854-018-9031-2

    Article  CAS  Google Scholar 

  20. V.K. Sahu, A.K. Das, R.S. Ajimsha, P. Misra, Low power high speed 3-bit multilevel resistive switching in TiO2 thin film using oxidisable electrode. J. Phys. Appl. Phys, 53(22), 225303 (2020). https://doi.org/10.1088/1361-6463/ab7acb

    Article  CAS  Google Scholar 

  21. G. Greczynski, L. Hultman, A step-by-step guide to perform x-ray photoelectron spectroscopy. J. Appl. Phys. 132(1), 011101 (2022). https://doi.org/10.1063/5.0086359

    Article  CAS  Google Scholar 

  22. I. Milosv, H.-H. Strehblow, B. Navinsek, M. Metikos-Hukovic, Electrochemical and thermal oxidation of TiN coatings studied by XPS. Surf. Interface Anal. 23(7–8), 529–539 (1995). https://doi.org/10.1002/sia.740230713

    Article  Google Scholar 

  23. H.-Y. Chen, F.-H. Lu, Oxidation behavior of titanium nitride films. J. Vac. Sci. Technol. Vac. Surf. Films 23(4), 1006–1009 (2005). https://doi.org/10.1116/1.1914815

    Article  CAS  Google Scholar 

  24. R. Chowdhury, R.D. Vispute, K. Jagannadham, J. Narayan, Characteristics of titanium nitride films grown by pulsed laser deposition. J. Mater. Res. 11(6), 1458–1469 (1996). https://doi.org/10.1557/JMR.1996.0182

    Article  CAS  Google Scholar 

  25. G. Martinez, V. Shutthanandan, S. Thevuthasan, J.F. Chessa, C.V. Ramana, Effect of thickness on the structure, composition and properties of titanium nitride nano-coatings. Ceram. Int. 40(4), 5757–5764 (2014). https://doi.org/10.1016/j.ceramint.2013.11.014

    Article  CAS  Google Scholar 

  26. M. Benegra, D.G. Lamas, M.E. Fernández de Rapp, N. Mingolo, A.O. Kunrath, R.M. Souza, Residual stresses in titanium nitride thin films deposited by direct current and pulsed direct current unbalanced magnetron sputtering. Thin Solid Films 494(1), 146–150 (2006). https://doi.org/10.1016/j.tsf.2005.08.214

    Article  CAS  Google Scholar 

  27. M. Dopita, D. Rafaja, X-ray residual stress measurement in titanium nitride thin films. Ninth European Powder Diffraction Conference: Prague, September 2-5, 2004 (München: Oldenbourg Wissenschaftsverlag, 2006), pp. 67–72. https://doi.org/10.1524/9783486992526-014

  28. H. Ju et al., Enhancement on the hardness and oxidation resistance property of TiN/Ag composite films for high temperature applications by addition of Si. Vacuum 209, 111752 (2023). https://doi.org/10.1016/j.vacuum.2022.111752

    Article  CAS  Google Scholar 

  29. H. Oettel, R. Wiedemann, S. Preißler, Residual stresses in nitride hard coatings prepared by magnetron sputtering and arc evaporation. Surf. Coat. Technol. (1995). https://doi.org/10.1016/0257-8972(95)08235-2

    Article  Google Scholar 

  30. K. He, N. Chen, C. Wang, L. Wei, J. Chen, Method for determining crystal grain size by X-ray diffraction. Cryst. Res. Technol. 53(2), 1700157 (2018). https://doi.org/10.1002/crat.201700157

    Article  CAS  Google Scholar 

  31. L. Braic et al., Titanium oxynitride thin films with tunable double epsilon-near-zero behavior for nanophotonic applications. ACS Appl. Mater. Interfaces 9(35), 29857–29862 (2017). https://doi.org/10.1021/acsami.7b07660

    Article  CAS  Google Scholar 

  32. M.N. Solovan, V.V. Brus, E.V. Maistruk, P.D. Maryanchuk, Electrical and optical properties of TiN thin films. Inorg. Mater. 50(1), 40–45 (2014). https://doi.org/10.1134/S0020168514010178

    Article  CAS  Google Scholar 

  33. C. Foo et al., Characterisation of oxygen defects and nitrogen impurities in TiO2 photocatalysts using variable-temperature X-ray powder diffraction. Nat. Commun. 12(1), 1 (2021). https://doi.org/10.1038/s41467-021-20977-z

    Article  CAS  Google Scholar 

  34. S. Kumar, M. Das, M.T. Htay, S. Sriram, S. Mukherjee, Electroforming-free, Y2O3 memristive crossbar array with low variability. ACS Appl. Electron. Mater. 4(6), 3080–3087 (2022). https://doi.org/10.1021/acsaelm.2c00472

    Article  CAS  Google Scholar 

  35. Y. Li et al., Improved resistive switching uniformity of SiO2 electrolyte-based resistive random access memory device with Cu oxidizable electrode. IEEE Electron Device Lett. 40(10), 1599–1601 (2019). https://doi.org/10.1109/LED.2019.2934145

    Article  CAS  Google Scholar 

  36. M.C. Sahu et al., Reconfigurable low-power TiO2 memristor for integration of artificial synapse and nociceptor. ACS Appl. Mater. Interfaces 15, 25713–25725 (2023). https://doi.org/10.1021/acsami.3c02727

    Article  CAS  Google Scholar 

  37. M. Zhang et al., Analysis on the filament structure evolution in reset transition of Cu/HfO2/Pt RRAM device. Nanoscale Res. Lett. 11(1), 269 (2016). https://doi.org/10.1186/s11671-016-1484-8

    Article  CAS  Google Scholar 

  38. D.-H. Lim et al., Electric field effect dominated bipolar resistive switching through interface control in a Pt/TiO2 /TiN structure. RSC Adv. 5(1), 221–230 (2015). https://doi.org/10.1039/C4RA09443C

    Article  CAS  Google Scholar 

  39. H. Jeon et al., Resistive switching behaviors of Cu/TaOx/TiN device with combined oxygen vacancy/copper conductive filaments. Curr. Appl. Phys. 15(9), 1005–1009 (2015). https://doi.org/10.1016/j.cap.2015.06.002

    Article  Google Scholar 

  40. S. Kumar, A. Agarwal, S. Mukherjee, Electrical performance of large-area Y2O3 memristive crossbar array with ultralow C2C variability. IEEE Trans. Electron Devices 69(7), 3660–3666 (2022). https://doi.org/10.1109/TED.2022.3172400

    Article  CAS  Google Scholar 

  41. A.K. Jena et al., Bipolar resistive switching in TiO2 artificial synapse mimicking Pavlov’s associative learning. ACS Appl. Mater. Interfaces 15(2), 3574–3585 (2023). https://doi.org/10.1021/acsami.2c17228

    Article  CAS  Google Scholar 

  42. M.C. Sahu, S.K. Mallik, S. Sahoo, S.K. Gupta, R. Ahuja, S. Sahoo, Effect of charge injection on the conducting filament of valence change anatase TiO2 resistive random access memory device. J. Phys. Chem. Lett. 12(7), 1876–1884 (2021). https://doi.org/10.1021/acs.jpclett.1c00121

    Article  CAS  Google Scholar 

  43. I. Valov, R. Waser, J.R. Jameson, M.N. Kozicki, Electrochemical metallization memories—fundamentals, applications, prospects. Nanotechnology 22(25), 254003 (2011). https://doi.org/10.1088/0957-4484/22/25/254003

    Article  CAS  Google Scholar 

  44. M. Dutta, A. Senapati, S. Ginnaram, S. Maikap, Resistive switching memory and artificial synapse by using Ti/MoS2 based conductive bridging cross-points. Vacuum 176, 109326 (2020). https://doi.org/10.1016/j.vacuum.2020.109326

    Article  CAS  Google Scholar 

  45. Y. Tian, L. Jiang, X. Zhang, G. Zhang, Q. Zhu, Trap-assisted transition between Schottky emission and Fowler-Nordheim tunneling in the interfacial-memristor based on Bi2S3 nano-networks. AIP Adv. 8(3), 035105 (2018). https://doi.org/10.1063/1.5006433

    Article  CAS  Google Scholar 

  46. C. Hu, M.D. McDaniel, A. Posadas, A.A. Demkov, J.G. Ekerdt, E.T. Yu, Highly controllable and stable quantized conductance and resistive switching mechanism in single-crystal TiO2 resistive memory on silicon. Nano Lett. 14(8), 4360–4367 (2014). https://doi.org/10.1021/nl501249q

    Article  CAS  Google Scholar 

  47. Y. Li, Z. Wang, R. Midya, Q. Xia, J.J. Yang, Review of memristor devices in neuromorphic computing: materials sciences and device challenges. J. Phys. Appl. Phys. 51(50), 503002 (2018). https://doi.org/10.1088/1361-6463/aade3f

    Article  CAS  Google Scholar 

  48. V.K. Sahu, A.K. Das, R.S. Ajimsha, P. Misra, On origin of resistive and capacitive contributions to impedance of memory states in Cu/TiO2/Pt RRAM devices by impedance spectroscopy. Ceram. Int. 49(2), 2215–2223 (2023). https://doi.org/10.1016/j.ceramint.2022.09.188

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Shri R. Kaul, Associate Director, Materials Science and Advanced Technology Group, and Head, Laser Materials Processing Division, RRCAT for his keen interest and helpful discussions.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: VKS, PM; Methodology: VKS, PM; Formal analysis and investigation: VKS, AKD, RSA, SB, RS, UD, SKR, and PM; Writing—original draft preparation: VKS; Writing—review and editing: VKS, AKD, RSA, SB, RS, UD, SKR, and PM; Resources: RSA; Supervision: PM.

Corresponding author

Correspondence to Vikas Kumar Sahu.

Ethics declarations

Competing interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahu, V.K., Das, A.K., Ajimsha, R.S. et al. Investigations on RF sputtered TiN thin films and Cu/TiO2/TiN devices for resistive switching memory applications. J Mater Sci: Mater Electron 34, 1818 (2023). https://doi.org/10.1007/s10854-023-11235-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11235-7

Navigation