Skip to main content
Log in

NO2 sensing behavior of Ni-doped In2O3 microcubes based chemiresistive gas sensors

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this study, hydrothermal method was used to synthesized Ni-doped In2O3 microcubes. XRD, Raman, XPS, and UV–Vis spectroscopy were used to examine additional structural, chemical, morphological, and optical characteristics of In2O3 and Ni-doped In2O3. In addition, the gas sensing measurement of synthesized material was also carried out. It was observed that the Ni-In7 sensor responds to 1 ppm NO2 with the greatest sensor response (Rg/Ra=6.46) and fastest response/ recovery time (30/120s) at 120 °C operating temperature which is 6 times greater than the Ni-In0 sensor. Furthermore, Ni-In7 displayed good stability in addition to its outstanding selectivity towards NO2. A high oxygen vacancy concentration gives more electrons to enhance NO2 activation. Additionally, the incorporation of Ni into the In2O3 structure contributes to the material's large surface area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. N. Elsayed, Toxicology 89, 161–174 (1994). https://doi.org/10.1016/0300-483X(94)90096-5

    Article  CAS  Google Scholar 

  2. R.. J.. van der A et al., J. Geo. Phys. Res. Atmos (2008). https://doi.org/10.1029/2007JD009021

    Article  Google Scholar 

  3. M. Modak et al., J. Mater. Sci. 33, 26205–26224 (2022). https://doi.org/10.1007/s10854-022-09306-2

    Article  CAS  Google Scholar 

  4. D. Han et.al, Sens, Act. B 25, 1139–1146 (2018). https://doi.org/10.1016/j.snb.2017.08.083

    Article  CAS  Google Scholar 

  5. S. Mahjan et al., Microelectronic. Eng. 266, 111887 (2022). https://doi.org/10.1016/j.mee.2022.111887

    Article  CAS  Google Scholar 

  6. W.H. Organization, World Health Statistics 2016: Monitoring Health for the SDGs Sustainable Development Goals (World Health Organization, Geneva, 2016)

    Google Scholar 

  7. J.A. Bernstein et al., J. Allergy Clin. Immunol. 114(5), 1116–1123 (2004). https://doi.org/10.1016/j.jaci.2004.08.030

    Article  Google Scholar 

  8. U. Choudhari et al., AIP Adv. 11(12), 125327 (2021). https://doi.org/10.1063/5.0072691

    Article  CAS  Google Scholar 

  9. A. Mirzaei et al., Ceram. Int. 42, 15119–15141 (2016). https://doi.org/10.1016/j.ceramint.2016.06.145

    Article  CAS  Google Scholar 

  10. S. Zhao et al., Sens. Act. B 282, 917–926 (2019). https://doi.org/10.1016/j.snb.2018.11.142

    Article  CAS  Google Scholar 

  11. J. Cao, Research 2021 (2021). https://doi.org/10.34133/2021/9863038

    Article  Google Scholar 

  12. S. Mahajan et al., J. Elec. Mater. 50, 2531–2555 (2021). https://doi.org/10.1007/s11664-021-08761-7

    Article  CAS  Google Scholar 

  13. N. Yamazoe et al., Sens. Act. B 138(1), 100–107 (2009). https://doi.org/10.1016/j.snb.2009.01.023

    Article  CAS  Google Scholar 

  14. S. Mahajan et al., Appl. Mater. Today 18, 100483 (2020). https://doi.org/10.1016/j.apmt.2019.100483

    Article  Google Scholar 

  15. Z. Zhu et al., Appl. Surf. Sci. 320, 348–355 (2014). https://doi.org/10.1016/j.apsusc.2014.09.108

    Article  CAS  Google Scholar 

  16. Y. Zhao et al., Sens. Act. B 328, 129030 (2021). https://doi.org/10.1016/j.snb.2020.129030

    Article  CAS  Google Scholar 

  17. Z. Li et al., J. Alloys Comp. 770, 721–731 (2019). https://doi.org/10.1016/j.jallcom.2018.08.188

    Article  CAS  Google Scholar 

  18. Y. Liu et.al, Sens, Act. B 352(1), 131001 (2022). https://doi.org/10.1016/j.snb.2021.131001

    Article  CAS  Google Scholar 

  19. J. Ma et al., Cera. Inter 45(7), 9225–9230 (2019). https://doi.org/10.1016/j.ceramint.2019.01.268

    Article  CAS  Google Scholar 

  20. H. Zhang et al., RSC. Adv 7, 49273–49278 (2017). https://doi.org/10.1039/C7RA09397G

    Article  CAS  Google Scholar 

  21. K.K. Pawar, J. Alloys Comp. 806, 726–736 (2019). https://doi.org/10.1016/j.jallcom.2019.07.248

    Article  CAS  Google Scholar 

  22. M. Ding et.al, Sens, Act. B 252, 418–427 (2017). https://doi.org/10.1016/j.snb.2017.06.016

    Article  CAS  Google Scholar 

  23. P. Li, RSC Adv. 4(29), 15161–15170 (2014). https://doi.org/10.1039/c3ra47467d

    Article  CAS  Google Scholar 

  24. Q. Yang Sens, Act. B 241, 806–813 (2017). https://doi.org/10.1016/j.snb.2016.09.145

    Article  CAS  Google Scholar 

  25. D. Han Sens, Act. B chem. 216, 488–496 (2015). https://doi.org/10.1016/j.snb.2015.04.083

    Article  CAS  Google Scholar 

  26. Z. Wang et al., ACS. Sens. 3, 468–475 (2018). https://doi.org/10.1021/acssensors.7b00896

    Article  CAS  Google Scholar 

  27. J. Ri et al., Sens. Act. B 317, 128194 (2020). https://doi.org/10.1016/j.snb.2020.128194

    Article  CAS  Google Scholar 

  28. Z. Ma et al., Sens. Act. B Chem. 305, 127377 (2020). https://doi.org/10.1016/j.snb.2019.127377

    Article  CAS  Google Scholar 

  29. C. Zhao et al., Sens. Act. B Chem. 207, 313–320 (2015). https://doi.org/10.1016/j.snb.2014.10.087

    Article  CAS  Google Scholar 

  30. C. Zhao et al., Sens. Act. B chem. (2015). https://doi.org/10.1016/j.snb.2019.126946

    Book  Google Scholar 

  31. Z. Wang et al., Nanoscale 8, 10622–10631 (2016). https://doi.org/10.1039/C6NR00858E

    Article  CAS  Google Scholar 

  32. V.D. Kapse et al., Vacuum 83(2), 346–352 (2008). https://doi.org/10.1016/j.vacuum.2008.05.027

    Article  CAS  Google Scholar 

  33. Y. Chen et al., J. alloys comp. 581, 653–658 (2013). https://doi.org/10.1016/j.jallcom.2013.07.168

    Article  CAS  Google Scholar 

  34. Z. Dong, Sens. Act. B chem. (2022), p.131227. https://doi.org/10.1016/j.snb.2021.131227

    Book  Google Scholar 

  35. M. Modak et al., Cera. Inter 48, 19978–19989 (2022). https://doi.org/10.1016/j.ceramint.2022.03.273

    Article  CAS  Google Scholar 

  36. Q. Yang et al., New J. Chem. 40, 2376–2382 (2013). https://doi.org/10.1039/C5NJ02325D

    Article  CAS  Google Scholar 

  37. P. Bogdanov et al., Sens. Act. B Chem. 57(1–3), 153–158 (1999). https://doi.org/10.1016/S0925-4005(99)00157-4

    Article  CAS  Google Scholar 

  38. X. Zhang et al., J. Mater. Chem. C 7, 7219–7229 (2019). https://doi.org/10.1039/C9TC00978G

    Article  CAS  Google Scholar 

  39. M.J. Valero-Romeo et al., Chem. Eng. J. 360, 75–88 (2019). https://doi.org/10.1016/j.cej.2018.11.132

    Article  CAS  Google Scholar 

  40. J. Bai et al., J. Colloid Inter. Sci. 560, 447–457 (2020). https://doi.org/10.1016/j.jcis.2019.10.090

    Article  CAS  Google Scholar 

  41. H. Zhu, Crys et al., Growth. Des. 8, 950–956 (2008). https://doi.org/10.1021/cg700850e

    Article  CAS  Google Scholar 

  42. A. Singhal et al., J. Phys. Chem. C 113, 3600–3606 (2009). https://doi.org/10.1021/jp8097846

    Article  CAS  Google Scholar 

  43. H. Zhao et al., J. Mat. Chem. Phys. 130, 921–931 (2011). https://doi.org/10.1016/j.matchemphys.2011.08.013

    Article  CAS  Google Scholar 

  44. H.M. Chen et al., Aip Adv. 4, 047121 (2014). https://doi.org/10.1063/1.4871937

    Article  CAS  Google Scholar 

  45. X.L. Wang et al., Appl. Phys. Lett. 102, 102112 (2013). https://doi.org/10.1063/1.4795797

    Article  CAS  Google Scholar 

  46. O. Bierwagen Semicond, Sci. Technol. 30, 024001 (2015). https://doi.org/10.1088/0268-1242/30/2/024001

    Article  CAS  Google Scholar 

  47. W. Du et al., Ceram. Int. 46, 20385–20394 (2020). https://doi.org/10.1016/j.ceramint.2020.05.129

    Article  CAS  Google Scholar 

  48. J. Gan et al., Sci. Rep. 3, 1021 (2013). https://doi.org/10.1038/srep01021

    Article  CAS  Google Scholar 

  49. B. Li, Langmuir 22(22), 9380–9385 (2006). https://doi.org/10.1021/la061844k

    Article  CAS  Google Scholar 

  50. Y. Liu et al., Elect. Acta 59, 121–127 (2012). https://doi.org/10.1016/j.electacta.2011.10.051

    Article  CAS  Google Scholar 

  51. H.J. Kim et al., ACS Appl. Mater. Interfaces 6, 18197–18204 (2014). https://doi.org/10.1021/am5051923

    Article  CAS  Google Scholar 

  52. S. Bai et al., J. Mater. Chem. A 1, 11335–11342 (2013). https://doi.org/10.1039/C3TA11516J

    Article  CAS  Google Scholar 

  53. D. Han et al., Sens. Act. B Chem. 262(1), 655–663 (2018). https://doi.org/10.1016/j.snb.2018.02.052

    Article  CAS  Google Scholar 

  54. C.W. Na, Sens. B. Chem. Act. (2018), pp.1671–1679. https://doi.org/10.1016/j.snb.2017.08.172

    Book  Google Scholar 

  55. Y. Liu, J. Colloid Interface Sci. 541, 249–257 (2019). https://doi.org/10.1016/j.jcis.2019.01.052

    Article  CAS  Google Scholar 

  56. K. Chen et al., Sens. Act. B 308(1), 127716 (2020). https://doi.org/10.1016/j.snb.2020.127716

    Article  CAS  Google Scholar 

  57. H. Ma et al., J. Alloys Comp. 782, 1121–1126 (2019). https://doi.org/10.1016/j.jallcom.2018.12.180

    Article  CAS  Google Scholar 

  58. D.A. Mirabella et al., Sens. Act. B Chem. 285, 232–239 (2019). https://doi.org/10.1016/j.snb.2019.01.024

    Article  CAS  Google Scholar 

  59. N. Srinatha, RSC Adv. 6, 9779–9788 (2016). https://doi.org/10.1039/C5RA22795J

    Article  CAS  Google Scholar 

  60. J. Zhang et al., RSC Phys. Chem. Phys. 19, 6313–6329 (2017). https://doi.org/10.1039/C6CP07799D

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude to Dr. Niranjan Ramgir at the technical physics division of the Bhabha Atomic Research centre in Mumbai, Maharashtra, India for XPS characterization. Also, the authors would like to thank Science and Engineering Research Board (SERB)’s core research grant (CRG/2019/004990) gave financial assistance for this project.

Author information

Authors and Affiliations

Authors

Contributions

SH: This study’s conceptualization, methodology, formal analysis, writing - first copy, and investigation. SJ: Project management, Conceptualization, Methodology, Supervision, Writing - Review and Editing.

Corresponding author

Correspondence to Shweta Jagtap.

Ethics declarations

Conflict of interest

The author declares that there is no conflict of interest in this paper.

Ethical approval

This article does not contain any studies with human or animal subjects.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hambir, S., Jagtap, S. NO2 sensing behavior of Ni-doped In2O3 microcubes based chemiresistive gas sensors. J Mater Sci: Mater Electron 34, 1716 (2023). https://doi.org/10.1007/s10854-023-11147-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11147-6

Navigation