Skip to main content
Log in

Relaxation dynamics and hopping mechanism in Mg-doped BaFe0.5Nb0.5O3 complex perovskite

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this research work, we demonstrate a detailed and systematic investigation of the structural, microstructural, dielectric, electrical, and magnetic properties of the Mg-doped BaFe0.5Nb0.5O3 complex perovskite prepared through the conventional ceramic method. While electron microscopic imaging depicts the heterogeneous distribution of non-uniform shape grains, X-ray diffraction analysis reveals the monoclinic crystal structure of the sample. The elemental analysis by energy-dispersive X-ray spectroscopy confirms the presence of expected elements in the sample. Besides valency identification of the involved elements, the existence of oxygen vacancies is evident from X-ray photoelectron spectroscopy analysis. Dielectric and electrical properties are investigated in terms of dielectric constant, dielectric loss, complex impedance, and conductivity studies. Magnetic analysis reveals that the sample exhibits weak ferromagnetism at room temperature. The obtained results from various characterizations signify the suitability of this sample for modern electronic device-based applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The datasets used and analyzed during the current study are available from the corresponding author upon reasonable request.

References

  1. S. Saha, T.P. Sinha, J. Phys.: Condens. Matter. 14, 249–258 (2002)

    CAS  Google Scholar 

  2. M. Ganguly, S. Parida, E. Sinha, S.K. Rout, A.K. Simanshu, A. Hussain, I.W. Kim, Mater. Chem. Phys. 131(1–2), 535–539 (2011)

    Article  CAS  Google Scholar 

  3. C.-Y. Chung, Y.-H. Chang, G.-J. Chen, Yin-Lai Chai. J. Cryst. Growth. 284, 100–107 (2005)

    Article  CAS  Google Scholar 

  4. A.K. Jha, K. Prasad, J. Chin. Adv. Mater. Soc. 2(4), 294–302 (2014)

    Article  CAS  Google Scholar 

  5. M. Yokosuka, Jpn J. Appl. Phys. 34, 5338–5340 (1995)

    Article  CAS  Google Scholar 

  6. K. Tezuka, K. Henmi, Y. Hinatsu, N.M. Masaki, J. Solid State Chem. 154, 591–597 (2000)

    Article  CAS  Google Scholar 

  7. S. Saha, T.P. Sinha, Phys. Rev. B 65, 134103–134111 (2002)

    Article  Google Scholar 

  8. I.P. Raevski, S.A. Kuropatkina, S.P. Kubrin, S.I. Raevskaya, V.V. Titov, D.A. Sarychev, M.A. Malitskaya, A.S. Bogatin, I.N. Zakharchenko, Ferroelectrics. 379(1), 48–54 (2009)

    Article  CAS  Google Scholar 

  9. U. Intatha, S. Eiessayeam, J. Wang, T. Tunkasiri, Curr. Appl. Phys. 10(1), 21–25 (2010)

    Article  Google Scholar 

  10. A. Raj, P. Gupta, R.N.P. Choudhary, J. Phys. Chem. Solids. 148, 109676 (2021)

    Article  CAS  Google Scholar 

  11. K.F. Liao, Y.S. Chang, Y.L. Chai, Y.Y. Tsai, H.L. Chen, Mater. Sci. Eng.: B 172(3), 300–304 (2010)

    Article  CAS  Google Scholar 

  12. M. Puri, S. Bahel, S.B. Narang, Integr. Ferroelectr. 158, 13–21 (2014)

    Article  CAS  Google Scholar 

  13. R. Chakravarty, N. Saikia, R.K. Parida, B.N. Parida, Phase Trans. 95(2), 163–177 (2022)

    Article  CAS  Google Scholar 

  14. R. Chakravarty, R.K. Parida, B.N. Parida, Appl. Phys. A 128, 647 (2022)

    Article  CAS  Google Scholar 

  15. S.K. Kar, S. Swain, S.P. Kumar, Mater. Chem. Phys. 155, 171–177 (2015)

    Article  CAS  Google Scholar 

  16. C.Y. Chung, Y.S. Chang, G.J. Chen, C.C. Chung, T.W. Huang, Solid State Comm. 145(4), 212–217 (2008)

    Article  CAS  Google Scholar 

  17. E. Wu, J. Appl. Crystallogr. 22(5), 506–510 (1989)

    Article  CAS  Google Scholar 

  18. A.L. Patterson, Phys. Rev. 56, 978–982 (1939)

    Article  CAS  Google Scholar 

  19. B.E. Warren, B.L. Averbach, J. Appl. Phys. 21, 595 (1950)

    Article  CAS  Google Scholar 

  20. S. Bhattacharjee, B. Mohanty, R.K. Parida, B.N. Parida, Phys. B: Phys. Condens. Matter. 624, 413373 (2022)

    Article  CAS  Google Scholar 

  21. S. Sen, R.K. Parida, B.N. Parida, Appl. Phys. A 128, 1054 (2022)

    Article  CAS  Google Scholar 

  22. K.M. Batoo, R. Verma, A. Chauhan, R. Kumar, M. Hadic, O.M. Aldossary, Y.A. Douri, J. Alloys Compd. 883, 160836 (2021)

    Article  CAS  Google Scholar 

  23. R.N.P. Choudhary, B.K. Choudhary, J. Mats Sc Letts. 9, 394 (1990)

    Article  CAS  Google Scholar 

  24. N. Saikia, R. Chakravarty, S. Bhattacharjee, R.L. Hota, R.K. Parida, B.N. Parida, Mater. Sci. Semiconduct. Process. 151, 106969 (2022)

    Article  CAS  Google Scholar 

  25. C.G. Koops, Phys. Rev. 83, 121 (1951)

    Article  CAS  Google Scholar 

  26. J.R. Macdonald, Impedance Spectroscopy Emphasizing Solid Materials and Systems (Wiley, New York, 1987)

    Google Scholar 

  27. M.A.L. Nobre, S. Lanfredi, J. Phys. Chem. Solids. 62, 1999–2006 (2001)

    Article  CAS  Google Scholar 

  28. P.R. Das, B.N. Parida, R. Padhee, R.N.P. Choudhary, J. Adv. Ceramics. 1(3), 232–240 (2012)

    Article  CAS  Google Scholar 

  29. B.N. Parida, N. Panda, R. Chakravarty, R. Padhee, N.C. Nayak, R.K. Parida, Inorg. Chem. Commun. 139, 109338 (2022)

    Article  CAS  Google Scholar 

  30. M. Rahmouni, B. Smari, E. Cherif, Dhahrib, K. Khirounia, Dalton Trans. 44, 10457–10466 (2015)

    Article  CAS  Google Scholar 

  31. B. Tilak, Am. J. Mater. Sci. 2, 110–118 (2012)

    Article  Google Scholar 

  32. A.K. Jonscher, Nature 267, 673–679 (1977)

    Article  CAS  Google Scholar 

  33. N.K. Karan, D.K. Pradhan, R. Thomas, B. Natesan, R.S. Katiyar, Solid State Ionics 179, 689–696 (2008)

    Article  CAS  Google Scholar 

  34. J.R. Macdonald, Solid State Ionics 13, 147–149 (1984)

    Article  CAS  Google Scholar 

  35. S. Bhattacharjee, B. Mohanty, R.K. Parida, B.N. Parida, Mater. Chem. Phys. 275, 125254 (2022)

    Article  CAS  Google Scholar 

  36. Q. Zhang, Z.F. Xu, L.F. Wang, S.H. Gao, S.J. Yuan, J. Alloys Compd. 649, 1151–1155 (2015)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Central Instruments Facility, IIT Guwahati for the VSM facility.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

Sample preparation, data collection and analysis, writing-original draft preparation: RC, review and editing: RP, conceptualization, review and editing: RKP, BNP.

Corresponding author

Correspondence to B. N. Parida.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chakravarty, R., Padhee, R., Parida, R.K. et al. Relaxation dynamics and hopping mechanism in Mg-doped BaFe0.5Nb0.5O3 complex perovskite. J Mater Sci: Mater Electron 34, 1452 (2023). https://doi.org/10.1007/s10854-023-10851-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10851-7

Navigation