Skip to main content
Log in

Design and fabrication of CoS2/graphene hybrid composite film sensor for NO2 gas-sensing performance

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Since there is a wide variety of 2D and nanostructured metal sulfide materials with easily tunable electrical, optical, physical, and chemical properties, they hold great promise for the development of numerous gas-sensing applications. These applications are particularly attractive for gas sensing in environmental monitoring and breath analysis. In this paper, researchers describe a unique approach for making CoS2/graphene nanocomposites using the chemical vapor deposition (CVD) technique. In comparison to other gas sensors based on transition-metal dichalcogenide materials, the proposed device offers the fastest response time for sensing NO2 gas. Using a heterojunction device in chemiresistive mode, we study the gas-sensing response at varying levels of NO2. The NO2 gas sensor device made from the CoS2/G composite showed a maximum sensitivity of 6.11 for 50 ppm at the optimal temperature (100 oC), in comparison to the pure CoS2 (2.1). The stability of the CoS2/G composite-based sensor device was further tested by measuring its response to varying concentrations of NO2 gas. It was also discovered that gas sensors based on CoS2 and CoS2/G had high levels of selectivity and reproducibility. Sensing mechanism study for the CoS2/G composite attributes the greater sensitivity of the sensing device to the heterostructure between graphene and CoS2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. G. Neri, First fifty years of chemoresistive gas sensors. Chemosensors. 3, 1–20 (2015)

    Article  CAS  Google Scholar 

  2. P.T. Moseley, Progress in the development of semiconducting metal oxide gas sensors: a review. Meas. Sci. Technol. 28, 082001 (2017)

    Article  Google Scholar 

  3. C. Li, D. Yan, M. Wei, Layer-by-layer assembly of ordered organiceinorganic luminescent film toward sensoring nitrobenzene compound. Sens. Actuat B 216, 198–203 (2015)

    Article  CAS  Google Scholar 

  4. H. Ma, R. Gao, D. Yan, J. Zhao, M. Wei, Organiceinorganic hybrid fluorescent ultrathin films and their sensor application for nitroaromatic explosives. J. Mater. Chem. C 1, 4128–4137 (2013)

    Article  CAS  Google Scholar 

  5. F. Gao, Y. Li, Y. Zhao, W. Wan, G. Du, X. Ren, H. Zhao, Facile synthesis of flowerlike hierarchical architecture of SnO2 nanoarrays. J. Alloys Compd. 703, 354–360 (2017)

    Article  CAS  Google Scholar 

  6. S. Ma, J. Jia, Y. Tian, L. Cao, S. Shi, X. Li, X. Chang, Improved H2S sensing properties of Ag/TiO2 nanofibers. Ceram. Int. 42, 2041–2044 (2016)

    Article  CAS  Google Scholar 

  7. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, A.A. Firsov, Two-dimensional gas of massless Dirac fermions in graphene. Nature. 438, 197–200 (2005)

    Article  CAS  Google Scholar 

  8. P. Zhao, Y. Tang, J. Mao, Y. Chen, H. Song, J. Wang, Y. Song, Y. Liang, X. Zhang, One-dimensional MoS2-Decorated TiO2 nanotube gas sensors for efficient alcohol sensing. J. Alloys Compd. 674, 252–258 (2016)

    Article  CAS  Google Scholar 

  9. P.K. Kannan, D.J. Late, H. Morgan, C.S. Rout, Recent developments in 2D layered inorganic nanomaterials for sensing. Nanoscale. 7, 13293–13312 (2015)

    Article  CAS  Google Scholar 

  10. D.J. Late, Y.K. Huang, B. Liu, J. Acharya, S.N. Shirodkar, J. Luo, A. Yan, D. Charles, U.V. Waghmare, V.P. Dravid, C.N.R. Rao, Sensing behavior of atomically thin layered MoS2 transistors. ACS Nano. 7, 4879–4891 (2013)

    Article  CAS  Google Scholar 

  11. N. Tamaekonga, C. Liewhiran, A. Wisitsoraat, A. Tuantranont, S. Phanichphant, NO2 sensing properties of flame-made MnOx-loaded ZnO-nanoparticle thick film Sens. Actuators B 204, 239–249 (2014)

    Article  Google Scholar 

  12. F. Ricciardella, S. Vollebregt, T. Polichetti, M. Miscuglio, B. Alfano, M.L. Miglietta, E. Massera, G.D. Francia, P.M. Sarro, Effects of graphene defects on gas sensing properties towards NO2 detection. Nanoscale. 9, 6085–6093 (2017)

    Article  CAS  Google Scholar 

  13. B. Cho, J. Yoon, S.K. Lim, A.R. Kim, D.H. Kim, S.G. Park, J.D. Kwon, Y.J. Lee, K.H. Lee, B.H. Lee, H.V. Ko, M.G. Hahm, Chemical sensing of 2D graphene/MoS2 heterostructure device. ACS Appl. Mater. Interfaces. 7, 16775–16780 (2015)

    Article  CAS  Google Scholar 

  14. Q. Wang, R. Zou, W. Xia, J. Ma, B. Qiu, A. Mahmood, R. Zhao, Y. Yang, D. Xia, Q. Xu, Facile Synthesis of Ultrasmall CoS2 nanoparticles within thin N-doped porous carbon shell for high performance lithium-ion batteries. Small 11, 201403579 (2015)

    Google Scholar 

  15. Q. Wang, L. Jiao, Y. Han, H. Du, W. Peng, Q. Huan, D. Song, Y. Si, Y. Wang, H. Yuan, CoS2 hollow spheres: fabrication and their application in Lithium-Ion Batteries. J. Phys. Chem. C 115, 8300–8304 (2011)

    Article  CAS  Google Scholar 

  16. Y. Gu, Y. Xu, Y. Wang, Graphene-Wrapped CoS nanoparticles for high-capacity Lithium-ion storage. ACS Appl. Mater. Inter. 5, 801–806 (2013)

    Article  CAS  Google Scholar 

  17. G. Huang, T. Chen, Z. Wang, K. Chang, W. Chen, Synthesis and electrochemical performances of cobalt sulfides/graphene nanocomposite as anode material of Li-ion battery. J. Power Sources. 235, 122–128 (2013)

    Article  CAS  Google Scholar 

  18. G.-. Xiang Ke, Y.-. Hao, X. Rong, J. Zhou, L. Liu, W. Xiao, Jian, Proceedings of the 16th International Conference on Nanotechnology Sendai, Japan, August 22–25, 2016

  19. S.L. Yang, H.B. Yao, M.R. Gao, S.H. Yu, Monodisperse cubic pyrite NiS2 dodecahedrons and microspheres synthesized by a solvothermal process in a mixed solvent: thermal stability and magnetic properties. Cryst. Eng. Commun. 11, 1383 (2009)

    Article  CAS  Google Scholar 

  20. J. Xie, S. Liu, G. Cao, T. Zhu, X. Zhao, Self-assembly of CoS2/graphene nanoarchitecture by a facile one-pot route and its improved electrochemical listorage properties. Nano Energy. 2, 49–56 (2013)

    Article  CAS  Google Scholar 

  21. B. Wang, J. Park, D. Su, C. Wang, H. Ahn, G. Wang, Solvothermal synthesis of CoS2—graphene nanocomposite material for high-performance supercapacitors. J. Mater. Chem. 22, 15750 (2012)

    Article  CAS  Google Scholar 

  22. R. BoopathiRaja, M. Parthibavarman, A. Nishara, Begum, Hydrothermal induced novel CuCo2O4 electrode for high performance supercapacitor applications. Vacuum. 165, 96–104 (2019)

    Article  CAS  Google Scholar 

  23. R. BoopathiRaja, M. Parthibavarman, Desert rose like heterostructure of NiCo2O4/NF@PPy composite has high stability and excellent electrochemical performance for asymmetric super capacitor application. Electrochimica Acta. 346, 136270 (2020)

    Article  CAS  Google Scholar 

  24. R. BoopathiRaja, M. Parthibavarman, Reagent induced formation of NiCo2O4 with different morphologies with large surface area for high performance asymmetric supercapacitors. Chem. Phys. Lett. 755, 137809 (2020)

    Article  CAS  Google Scholar 

  25. Y. Zhu, X. Xu, G. Chen, Y. Zhong, R. Cai, L. Li, Z. Shao, Surfactant-free self assembly of reduced graphite oxide-MoO2 nanobelt composites used as electrode for lithium-ion batteries. Electrochim. Acta. 211, 972–981 (2016)

    Article  CAS  Google Scholar 

  26. Y. Du, X. Zhu, X. Zhou, L. Hu, Z. Dai, J. Bao, Co3S4 porous nanosheets embedded in graphene sheets as high-performance anode materials for lithium and sodium storage. J. Mater. Chem. A 3, 6787–6791 (2015)

    Article  CAS  Google Scholar 

  27. X. Li, J. Wang, D. Xie, J. Xu, Y. Xia, L. Xiang, S. Komarneni, Mater. Lett. 189, 42 (2017)

    Article  CAS  Google Scholar 

  28. M. Donarelli, S. Prezioso, F. Perrozzi, F. Bisti, M. Nardone, L. Giancaterini et al., Response to NO2 and other gases of resistive chemically exfoliated MoS2-based gas sensors. Sens. Actuators B 207, 602–613 (2015)

    Article  CAS  Google Scholar 

  29. L. Yu, F. Guo, S. Liu, J. Qi, M. Yin, B. Yang, Z. Liu, B. Fan, Hierarchical 3D flower-like MoS2 spheres: post-thermal treatment in vacuum and their NO2 sensing properties. Mater. Lett. 183, 122–126 (2016)

    Article  CAS  Google Scholar 

  30. N. Tammanoon, A. Wisitsoraat, C. Sriprachuabwong, D. Phokharatkul, A. Tuantranont et al., Ultrasensitive NO2 Sensor based on Ohmic Metal-Semiconductor Interfaces of Electrolytically Exfoliated Graphene/Flame-Spray-Made SnO2 nanoparticles Composite operating at low temperatures. ACS Appl. Mater. Interfaces. 7, 24338–24352 (2015)

    Article  CAS  Google Scholar 

  31. S. Cui, Z. Wen, X. Huang, J. Chang, J. Chen, Stabilizing MoS2 nanosheets through SnO2 Nanocrystal decoration for high-performance gas sensing in Air. Small. 11, 2305–2313 (2015)

    Article  CAS  Google Scholar 

  32. J.Z. Ou, W. Ge, B. Carey, T. Daeneke, A. Rotbart et al., Physisorption-based charge transfer in two-dimensional SnS2 for selective and reversible NO2 gas sensing. ACS Nano. 9, 10313–10323 (2015)

    Article  CAS  Google Scholar 

  33. H. Long, H.-T. Anna, S. Pham, Thang, Tang, Zirong, [4]; Zettl, Alex, Carraro, Carlo, High Surface Area MoS2/Graphene hybrid aerogel for ultrasensitive NO2 detection. Adv. Funct. Mater. 26, 5158–5165 (2016)

    Article  CAS  Google Scholar 

  34. Y. Yuan Xiong, M. Lingmin, L. Haining, L. Yuan, Y. Chun, D. Mingli, Hongbo, Yin Fan, Direct Synthesis of Upstanding Graphene/ZnO Nanowalls/Graphene Sandwich Heterojunction and its application for NO2 Gas Sensor. J. Nanosci. Nanotechnol. 19, 7947–7952 (2019)

    Article  Google Scholar 

  35. H.-Y. Lee, Y.-C. Heish, C.-T. Lee, High sensitivity detection of nitrogen oxide gas at room temperature using zinc oxide-reduced graphene oxide sensing membrane. J. Alloy Compd. 773, 950–954 (2019)

    Article  CAS  Google Scholar 

  36. M. Ferdi, Fellah, The reduced graphene oxide/WO3: sensing properties for NO2 gas detection at room temperature. Diam. Relat. Mater. 119, 108593 (2021)

    Article  Google Scholar 

  37. W. Yan, T. Pham, A. Zettl, C. Carraro, R. Maboudian, Effects of ambient humidity and temperature on the NO2 sensing characteristics of WS2/graphene aerogel. Appl. Surf. Sci. 450, 372–379 (2018)

    Article  CAS  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

RS and JD, study conceptualization and writing (original draft). AG funding this manuscript.

Corresponding author

Correspondence to J. Dineshkumar.

Ethics declarations

Conflict of interest

The authors declare they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 259.8 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sakthivel, R., Geetha, A. & Dineshkumar, J. Design and fabrication of CoS2/graphene hybrid composite film sensor for NO2 gas-sensing performance. J Mater Sci: Mater Electron 34, 1495 (2023). https://doi.org/10.1007/s10854-023-10807-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10807-x

Navigation