Skip to main content

Advertisement

Log in

Nanostructured YbMn1−хFeхO3 and its physical properties

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The present study investigates the concentration dependence of physical properties and structural parameters of YbMn1−хFeхO3 (YbMF) compositions, which were nanostructured using the mechanical activation method at a pressure of 1 GPa. Using X-ray diffraction, the dependence of the unit cell parameters of the H-hexagonal (P63cm) and O-orthorhombic (Pnma) phases on the Fe3+ dopant concentration was studied. It was found for the first time that a morphotropic region (MR) was formed in YbMF in the concentration range x = 0.6–0.8, characterized by the coexistence of H and O-phases. At the point х = 0.5, the minimum values of all bond lengths of the H-phase were observed, while at х = 0.8, the bond length minimum of the YbO8 dodecahedra of the O-phase was observed. The tilt θ° and rotation φ° angles of oxygen octahedra MnO6/FeO6 of the O-phase also vary with the Fe3+ concentration in the range of (19.354–19.754)° and (12.648–12.677)°, respectively. Using the complex impedance method Z* = Z′(ω) − j·Z″ (ω), the study showed that the relaxation character was non-Debye. Theoretical and experimental curves were obtained for each YbMF composition at different temperatures, along with the corresponding equivalent circuits. The study also investigated the parameters of the stochastic magnetic domain structure using the random magnetic anisotropy model. It was found that in the region of solid solutions of YbMF, the values of Hc and Mr have maxima at x = 0.5, and the highest value of Hc, equal to 452 Oe, is inside the MR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

All the data generated or analyzed during this study are included in this published article.

References

  1. H. Razavi-Khosroshahi, K. Edalati, H. Emami, E. Akiba, Z. Horita, M. Fuji, Inorg. Chem. 56, 2576 (2017)

    Article  CAS  Google Scholar 

  2. K. Edalati, Adv. Eng. Mater. 21, 1800272 (2019)

    Article  Google Scholar 

  3. R.Z. Valiev, I.V. Alexandrov, Nanostruct. Mater. 12, 35 (1999)

    Article  Google Scholar 

  4. K. Edalati, A. Bachmaier, V.A. Beloshenko, Y. Beygelzimer, V.D. Blank, W.J. Botta, K. Bryła, J. Čížek, S. Divinski, N.A. Enikeev, Y. Estrin, G. Faraji, R.B. Figueiredo, M. Fuji, T. Furuta, T. Grosdidier, J. Gubicza, A. Hohenwarter, Z. Horita, J. Huot, Y. Ikoma, M. Janeček, M. Kawasaki, P. Král, S. Kuramoto, T.G. Langdon, D.R. Leiva, V.I. Levitas, A. Mazilkin, M. Mito, H. Miyamoto, T. Nishizaki, R. Pippan, V.V. Popov, E.N. Popova, G. Purcek, O. Renk, Ã. Révész, X. Sauvage, V. Sklenicka, W. Skrotzki, B.B. Straumal, S. Suwas, L.S. Toth, N. Tsuji, R.Z. Valiev, G. Wilde, M.J. Zehetbauer, X. Zhu, Mater. Res. Lett. 10, 163 (2022)

    Article  CAS  Google Scholar 

  5. H. Razavi-Khosroshahi, K. Edalati, M. Arita, Z. Horita, M. Fuji, Scr. Mater. 124, 59 (2016)

    Article  CAS  Google Scholar 

  6. K. Abdulvakhidov, I. Dmitrenko, A. Soldatov, Z. Li, M. Sirota, Appl. Phys. A 128, 88 (2022)

    Article  CAS  Google Scholar 

  7. K. Abdulvakhidov, A. Soldatov, I. Dmitrenko, Z. Li, S. Kallaev, Z. Omarov, Results Phys. 22, 103905 (2021)

    Article  Google Scholar 

  8. K.G. Abdulvakhidov, M.A. Sirota, A.P. Budnyk, T.A. Lastovina, B.K. Abdulvakhidov, S.A. Sadykov, P.S. Plyaka, A.V. Soldatov, J. Phys. Condens. Matter. 31, 135402 (2019)

    Article  CAS  Google Scholar 

  9. V.V. Zyryanov, V.F. Sysoev, V.V. Boldyrev, Dokl. Chem. Technol. 1, 51–53 (1988)

    Google Scholar 

  10. V.F. Sysoev, V.V. Zyryanov, Sov. Powder Metall. Met. Ceram. 30, 637 (1991)

    Article  Google Scholar 

  11. V.V. Boldyrev, J. Chim. Phys. 83, 821 (1986)

    Article  CAS  Google Scholar 

  12. E. Boldyreva, Chem. Soc. Rev. 42, 7719 (2013)

    Article  CAS  Google Scholar 

  13. S.L. Samal, T. Magdaleno, K.V. Ramanujachary, S.E. Lofland, A.K. Ganguli, J. Solid State Chem. 183, 643 (2010)

    Article  CAS  Google Scholar 

  14. Y. Liu, Y.F. Kong, J.J. Xu, S.W. Cheong, J. Synth. Cryst. 44, 2024 (2015)

    CAS  Google Scholar 

  15. Y.-H. Huang, M. Karppinen, N. Imamura, H. Yamauchi, J.B. Goodenough, Phys. Rev. B 76, 174405 (2007)

    Article  Google Scholar 

  16. K. Abdulvakhidov, Z. Li, B. Abdulvakhidov, A. Soldatov, S. Otajonov, R. Ergashev, D. Yuldashaliyev, B. Karimov, A. Nazarenko, P. Plyaka, S. Shapovalova, M. Vitchenko, I. Mardasova, E. Ubushaeva, E. Sitalo, Appl. Phys. A 129, 185 (2023)

    Article  CAS  Google Scholar 

  17. S.C. Abrahams, Acta Crystallogr. Sect. B Struct. Sci. 57, 485 (2001)

    Article  CAS  Google Scholar 

  18. G. Qiang, Y. Fang, X. Lu, S. Cao, J. Zhang, Appl. Phys. Lett. 108, 022906 (2016)

    Article  Google Scholar 

  19. J. Liu, C. Toulouse, P. Rovillain, M. Cazayous, Y. Gallais, M.-A. Measson, N. Lee, S.W. Cheong, A. Sacuto, Phys. Rev. B 86, 184410 (2012)

    Article  Google Scholar 

  20. T. Takahashi, T. Yoshimura, N. Fujimura, Jpn. J. Appl. Phys. 45, 7329 (2006)

    Article  CAS  Google Scholar 

  21. S. Zhang, A. Gong, X. Yang, P. Han, N. Sun, Y. Li, L. Zhang, X. Hao, Inorg. Chem. Front. 9, 6448 (2022)

    Article  CAS  Google Scholar 

  22. Y. Yun, A.S. Thind, Y. Yin, H. Liu, Q. Li, W. Wang, A.T. N’Diaye, C. Mellinger, X. Jiang, R. Mishra, X. Xu, X. Li, Y. Yun, X. Xu, in APS March Meet. Abstr (arXiv, 2021), p. R37.011

  23. Y.K. Jeong, J.-H. Lee, S.-J. Ahn, S.-W. Song, H.M. Jang, H. Choi, J.F. Scott, J. Am. Chem. Soc. 134, 1450 (2012)

    Article  CAS  Google Scholar 

  24. X. Li, Y. Yun, X. Xu, in APS March Meet. Abstr (2021), p. R37.011.

  25. R.C. Rai, C. Horvatits, D. Mckenna, J. Du Hart, AIP Adv. 9, 015019 (2019)

    Article  Google Scholar 

  26. H. Iida, T. Koizumi, Y. Uesu, K. Kohn, N. Ikeda, S. Mori, R. Haumont, P.-E. Janolin, J.-M. Kiat, M. Fukunaga, Y. Noda, J. Phys. Soc. Jpn. 81, 024719 (2012)

    Article  Google Scholar 

  27. L.J. Downie, R.J. Goff, W. Kockelmann, S.D. Forder, J.E. Parker, F.D. Morrison, P. Lightfoot, J. Solid State Chem. 190, 52 (2012)

    Article  CAS  Google Scholar 

  28. K.G. Abdulvakhidov, M.A. Sirota, A.P. Budnyk, T.A. Lastovina, A.V. Soldatov, S.N. Kallayev, Z.M. Omarov, S.A. Sadykov, B.K. Abdulvakhidov, M.A. Vitchenko, I.V. Mardasova, P.S. Plyaka, R.G. Mitarov, Mater. Res. Express. 5, 115029 (2018)

    Article  Google Scholar 

  29. Z. Li, K. Abdulvakhidov, B. Abdulvakhidov, A. Soldatov, A. Nazarenko, P. Plyaka, A. Manukyan, V.J. Angadi, S. Shapovalova, M. Sirota, M. Vitchenko, I. Mardasova, E. Ubushaeva, S. Kallaev, Z. Omarov, Appl. Phys. A 128, 1075 (2022)

    Article  CAS  Google Scholar 

  30. M.A. Sirota, K.G. Abdulvakhidov, A.P. Budnyk, A.V. Soldatov, A.L. Bugaev, T.A. Lastovina, Y.V. Kabirov, M.I. Mazuritskiy, P.S. Plyaka, S.N. Kallaev, Z.M. Omarov, S.A. Sadykov, B.K. Abdulvakhidov, I.V. Mardasova, M.A. Vitchenko, Ferroelectrics. 526, 1 (2018)

    Article  CAS  Google Scholar 

  31. E.N. Ubushaeva, E.V. Likhushina, K.G. Abdulvakhidov, M.A. Vitchenko, B.K. Abdulvakhidov, V.B. Shirokov, N.V. Lyanguzov, Y.I. Yuzyuk, E.M. Kaidashev, I.V. Mardasova, Tech. Phys. Lett. 37, 952 (2011)

    Article  CAS  Google Scholar 

  32. I. Dmitrenko, K. Abdulvakhidov, A. Soldatov, A. Kravtsova, Z. Li, M. Sirota, P. Plyaka, B. Abdulvakhidov, Appl. Phys. A 128, 1128 (2022)

    Article  CAS  Google Scholar 

  33. A.C. Murrieta, F.F. Contreras-Torres, Mater. Today Proc. 48, 96 (2022)

    Article  CAS  Google Scholar 

  34. M. Sirota, K. Abdulvakhidov, T. Lastovina, A. Pnevskaya, E. Ubushaeva, P. Plyaka, A. Nazarenko, M. Vitchenko, I. Mardasova, A. Budnyk, Phys. Status Solidi. 218, 2000782 (2021)

    Article  CAS  Google Scholar 

  35. L. Zhengyou, K. Abdulvakhidov, A. Nazarenko, A. Soldatov, P. Plyaka, Y. Rusalev, A. Manukyan, I. Dmitrenko, M. Sirota, Appl. Phys. A 128, 343 (2022)

    Article  CAS  Google Scholar 

  36. D.M. Vasil’ev, B.I. Smirnov, Sov Phys. Uspekhi. 4, 226 (1961)

    Article  Google Scholar 

  37. M.C. Weber, M. Guennou, H.J. Zhao, J. Íñiguez, R. Vilarinho, A. Almeida, J.A. Moreira, J. Kreisel, Phys. Rev. B 94, 214103 (2016)

    Article  Google Scholar 

  38. Z.-Q. Wang, Y.-S. Lan, Z.-Y. Zeng, X.-R. Chen, Q.-F. Chen, Solid State Commun. 288, 10 (2019)

    Article  CAS  Google Scholar 

  39. M. Eibschütz, S. Shtrikman, D. Treves, Phys. Rev. 156, 562 (1967)

    Article  Google Scholar 

  40. H. Iida, T. Koizumi, Y. Uesu, Phase Trans. 84, 747 (2011)

    Article  CAS  Google Scholar 

  41. R.S. Iskhakov, S.V. Komogortsev, Bull. Russ. Acad. Sci. Phys. 71, 1620 (2007)

    Article  Google Scholar 

  42. R.S. Iskhakov, V.A. Ignatchenko, S.V. Komogortsev, A.D. Balaev, J. Exp. Theor. Phys. Lett. 78, 646 (2003)

    Article  CAS  Google Scholar 

  43. E.C. Devi, I. Soibam, J. Supercond. Nov. Magn. 32, 1293 (2019)

    Article  CAS  Google Scholar 

  44. H. Zhang, D. Zeng, Z. Liu, J. Magn. Magn. Mater. 322, 2375 (2010)

    Article  CAS  Google Scholar 

  45. B.D. Cullity, C.D. Graham, Introduction to magnetic materials (Wiley, 2011)

    Google Scholar 

  46. T. Holstein, H. Primakoff, Phys. Rev. 58, 1098 (1940)

    Article  Google Scholar 

  47. S. Chikazumi, C.D. Graham, Physics of ferromagnetism (Oxford University Press, 1997)

    Google Scholar 

Download references

Funding

The research was supported by the Strategic Academic Leadership Program of the Southern Federal University (“Priority 2030”).

Author information

Authors and Affiliations

Authors

Contributions

KA and BA: writing-original draft. ZL: conceptualization. SS: methodology. AS: funding acquisition. SO and JA: formal analysis and investigation. AM: writing, reviewing and editing. AN and PP: resources. AA: Supervision. ID and MS: Visualization.

Corresponding author

Correspondence to Kamaludin Abdulvakhidov.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Abdulvakhidov, K., Soldatov, S. et al. Nanostructured YbMn1−хFeхO3 and its physical properties. J Mater Sci: Mater Electron 34, 1208 (2023). https://doi.org/10.1007/s10854-023-10657-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10657-7

Navigation