Skip to main content
Log in

Investigation of PEALD ZrO2/La2O3-based high-k nanolaminates sandwiched between Al and Ti electrodes for MIM capacitors

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

ZrO2/La2O3/ZrO2/La2O3/ZrO2 (ZLZLZ) Penta-layered nanolaminates, which were deposited by an indigenously developed plasma-enhanced atomic layer deposition (ID-PEALD) system, sandwiched between the thermally evaporated Aluminum (Al) top electrode and RF-sputtered Titanium (Ti) bottom electrode have been investigated for the metal–insulator–metal (MIM) capacitors. In this work, the MIM capacitors were fabricated using ID-PEALD with their respective precursors and O2 plasma. The lowest RMS surface roughness of 0.2624 nm has been determined by atomic force microscopy (AFM). The pyrochlore formation of ZLZLZ nanolaminates was investigated by X-ray photoelectron spectroscopy. The post-deposition annealing by muffle furnace was employed on the ZLZLZ nanolaminates at 400°C. The lowest leakage current density of 9.70 × 10− 7 A/cm2 at 1 V has been achieved and a low barrier height of 0.12 eV has been calculated from ln(J) versus E1/2. High capacitance in the range of 30.5 fF/µm2 was achieved with the minimal leakage current at 1 V targeting to meet the ITRS projections for 2023. These nanolaminates provide a high dielectric constant (κ) of ~ 33 and a lower equivalent oxide thickness (EOT) of 0.5446 nm. These results suggest that the MIM capacitors fabricated by ID-PEALD deposited high-k nanolaminates are suitable to be used for memory applications in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data underlying this article are available in the article.

References

  1. B. Zhu, X. Wu, W. Liu, S. Ding, D. Zhang, Z. Fan, Nanoscale Research Letters, 2019; 14, 53 (2019)

  2. S. Ding, Y.J. Huang, Y. Huang, S. Pan, W. Zhang, L. Wang, Chin. Phys. 16, 2803–2808 (2007)

    Article  CAS  Google Scholar 

  3. S. Patil, V. Barhate, V. Patil, K. Agrawal, A. Mahajan, J. Mater. Sci: Mater. Electron. 33, 11227–11235 (2022)

    CAS  Google Scholar 

  4. C. Lin, Y. Wu, R. Jiang, M. Yu, IEEE Electron Device Lett. 34, 1418–1420 (2013)

    Article  CAS  Google Scholar 

  5. T. Onaya, T. Nabatame, T. Sawada, K. Kurishima, N. Sawamoto, A. Ohi, T. Chikyow, A. Ogura, ECS Trans. 75(8), 667–674 (2016)

    Article  CAS  Google Scholar 

  6. S.H. Lin, K.C. Chiang, A. Chin, F.S. Yeh, IEEE Electron Device Lett. 30, 715–717 (2009)

    Article  CAS  Google Scholar 

  7. J. Mu, X. Chou, Z. Ma, J. He, J. Xiong, Micromachines 9, 69 (2018)

    Article  Google Scholar 

  8. S. Patil, V. Barhate, A. Mahajan, H. Xu, M. Rasadujjaman, J. Zhang, Int. J. Mod. Phys. B 35, 14–162140045 (2021)

    Article  Google Scholar 

  9. K. Agrawal, V. Patil, A. Khairnar, A. Mahajan, J. Mater. Sci: Mater. Electron. 28, 12503–12508 (2017)

    CAS  Google Scholar 

  10. A. Khairnar, V. Patil, K. Agrawal, R. Salunke, A. Mahajan, Semiconductors 51, 131–133 (2017)

    Article  CAS  Google Scholar 

  11. B. Joshi, A. Mahajan, Optoelectron. Adv. Mater. 1(12), 659–662 (2007)

    CAS  Google Scholar 

  12. H. Zhang, R. Solanki, J. Electrochem. Soc. 148(4), F63–F66 (2001)

    Article  CAS  Google Scholar 

  13. R. Padmanabhan, N. Bhat, S. Member, S. Mohan, IEEE Trans. Electron. Devices. 59, 1364–1370 (2012)

    Article  CAS  Google Scholar 

  14. H. Zhang, R. Solanki, B. Roberds, G. Bai, I. Banerjee, J. Appl. Phys. 87, 1921 (2000)

    Article  CAS  Google Scholar 

  15. J. Yota, H. Shen, R. Ramanathan, J. Vacuum Sci. Technol. A 31, 01A134 (2013)

    Article  Google Scholar 

  16. L. Zhong, W.L. Daniel, Z. Zhang, S.A. Campbell, W.L. Gladfelter, Chem. Vap. Deposition 12, 143–150 (2006)

    Article  CAS  Google Scholar 

  17. V. Barhate, K. Agrawal, V. Patil, S. Patil, A. Mahajan, Int. J. Mod. Phys. B 32, 1–5 (2018)

    Article  Google Scholar 

  18. K. Agrawal, V. Barhate, V. Patil, L. Patil, A. Mahajan, Appl. Phys. A 126, 650 (2020)

    Article  CAS  Google Scholar 

  19. R. Karthik, A. Akshaykranth, IJCTA 10(9), 219–234 (2017)

    Google Scholar 

  20. S.-Y. Lee, H. Kim, P.C. McIntyre, Appl. Phys. Lett. 82, 17 (2003)

    Google Scholar 

  21. V.S. Patil, K.S. Agrawal, A.G. Khairnar, B.J. Thibeault, A.M. Mahajan, Mater. Sci. Semiconduct. Process. 56, 277–281 (2016)

    Article  CAS  Google Scholar 

  22. Zirconium Dioxide (Zirconia): Properties, Production and Applications. https://matmatch.com/learn/material/zirconium-dioxide-zirconias

  23. K.N. Woods, T.-H. Chiang, P.N. Plassmeyer, M.G. Kast, A.C. Lygo, A.K. Grealish, S.W. Boettcher, C.J. Page, ACS Appl. Mater. Interfaces. 9, 10897–10903 (2017)

    Article  CAS  Google Scholar 

  24. B. Paul, K. Singh, T. Jaron, A. Roy, A. Chowdhury, J. Alloys Compd. 686, 130–136 (2016)

    Article  CAS  Google Scholar 

  25. V. Patil, K. Agrawal, V. Barhate, S. Patil, A. Mahajan, Semicond. Sci. Technol. 34, 034004 (2019)

    Article  CAS  Google Scholar 

  26. Z. Peter Lackner, S. Zou, U. Mayr, Diebold, M. Schmid, Phys. Chem. Chem. Phys. 21, 17613–17620 (2019)

    Article  Google Scholar 

  27. Lanthanum X-ray photoelectron spectra, lanthanum electron configuration, and other elemental information. 2021. https://xpssimplified.com/elements/lanthanum.php

  28. X-ray photoelectron spectroscopy (XPS or ESCA) curve fitting procedures and reference materials are liste here to provide a starting point for the consistent interpretation of XPS spectra. https://www.xpsfitting.com/search/label/Titanium

  29. Naqeeb, Ullah et al., Lingling Huang, ELEKTRONIKA IR ELEKTROTECHNIKA, 2022; 28,2

  30. D. Austin, D. Allman, D. Price, S. Hose, F. John, Conley, IEEE Electron Device Lett. 36, 5 (2015)

    Article  Google Scholar 

  31. Z. Dustin, K. Austin, M. Holden, J.F. Hayes, Jr Conley, thesis in Oregon State University presented on May 19, 2017

  32. S.J. Kim, B.J. Cho, M.-F. Li, S.-J. Ding, C. Zhu, Ming Bin Yu, Babu Narayanan, Albert Chin, and Dim-Lee Kwong. IEEE Electron Device Lett. 25, 8 (2004)

    Google Scholar 

  33. B. Zhu, W.J. Liu, L. Wei, D.W. Zhang, A. Jiang, S.J. Ding, J. Appl. Phys. 118, 014501 (2015)

    Article  Google Scholar 

  34. V. Barhate, K. Agrawal, V. Patil, S. Patil, A. Mahajan, Mater. Sci. Semiconduct. Process. 117, 105161 (2020)

    Article  CAS  Google Scholar 

  35. E.W. Cowell, S.W. Muir, D.A. Keszler, J.F. Wager, J. Appl. Phys. 114, 213703–213707 (2013)

    Article  Google Scholar 

  36. S. Banerjee, P. Zhang, AIP Adv. 9, 085302–085306 (2019)

    Article  Google Scholar 

  37. E. Hourdakis, A.G. Nassiopoulou, Appl. Phys. Lett. 111, 033503 (2017)

    Article  Google Scholar 

  38. Y.J. Huang, Y. Huang, S.J. Ding, W. Zhang, R. Liu, Chin. Phys Lett. 24, 2942–2944 (2007)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge by thanking the financial support of the Council of Scientific & Industrial Research (CSIR file no. 22(0716)/16/EMR-II), and DST-FIST (file no.SR/FST/PS-II/2018/55(C)), New Delhi for conducting this work. The authors acknowledge to ICP-PTC clean laboratory of the Microelectronics Department, NCUT, Beijing, China and UGC-DAE CSR, Indore for providing necessary fabrication and characterization facilities, respectively. One of the authors Sumit R. Patil is thankful to DST-INSPIRE for providing research fellowships.

Funding

Information is given in the acknowledgment section.

Author information

Authors and Affiliations

Authors

Contributions

SRP contributed to conceptualization, methodology, investigation, writing and preparation of original draft, writing, reviewing, and editing of the manuscript, formal analysis, and software; VYB contributed to methodology, reviewing and editing of the manuscript, data curation, formal analysis, validation, and visualization; MR contributed to visualization, writing, reviewing, and editing of the manuscript, data curation, and formal analysis; JZ, SJD, and AMM contributed to supervision and writing, reviewing, and editing of the manuscript.

Corresponding author

Correspondence to Ashok M. Mahajan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patil, S.R., Borokar, V.Y., Rasadujjaman, M. et al. Investigation of PEALD ZrO2/La2O3-based high-k nanolaminates sandwiched between Al and Ti electrodes for MIM capacitors. J Mater Sci: Mater Electron 34, 1284 (2023). https://doi.org/10.1007/s10854-023-10655-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10655-9

Navigation