Skip to main content
Log in

Structure, optical, and dielectric properties of AlCuTiO3 nanoparticles

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A series of Al1−xCuxTiO3+δ (x = 0.2, 0.4, 0.6 and 0.8) (ACT) nanoparticles were synthesized via hydrothermal method using low operating temperatures. The diffraction patterns confirmed the presence of tetragonal structure including some secondary phases. The well-defined nanosized grains, and particles were detected in the surface morphology. The particle size distribution (PSD) showed the existence of smallest, and largest particles for x = 0.2–0.8. The presence of Al, Cu, Ti, and O was confirmed from energy dispersive spectral (EDS) analysis. The wide optical bandgap was noticed for all copper concentrations. Moreover, the photocatalytic activity was observed for all samples. The frequency dependence of dielectric constant, and dielectric loss was clearly discussed. The high dielectric constant, and loss were noticed for x = 0.8 sample, where the copper concentration is high. This can suggest the dielectric absorber applications. The space charge polarization mechanism, and relaxations were clearly understood using dielectric modulus, and impedance spectra. Cole–Cole plots conveyed the relaxation dynamics of x = 0.2–0.8.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

The data will be made immediately available based on the request.

References

  1. B. Venkata Shiva Reddy et al., Phase transformation, nanorods like morphology, wide band gap and dielectric properties of 1 − x(Al0.2La0.8TiO3) + x(BaTiO3) (x = 0.2–0.8) nanocomposites. J. Mater. Sci. 31, 9293–9305 (2020)

    Google Scholar 

  2. M. Prakash et al., Optical and functional properties of hydrothermally synthesized tetragonal Ba0.4Cu0.6−xLaxTiO3 (x = 0.2–0.6) nanoparticles. Mater. Res. Express. 7, 015037 (2020)

    Article  CAS  Google Scholar 

  3. K. Sahu, V.V.S. Murty, Novel sol–gel method of synthesis of pure and aluminium doped TiO2 nanoparticles. Indian J. Pure Appl. Phys. 54, 485–488 (2016)

    Google Scholar 

  4. H. Tang, J. He, J. Persello, Giant electro rheological effects of aluminum-doped TiO2 nanoparticles. Particuology 8, 442–446 (2010)

    Article  CAS  Google Scholar 

  5. E.M.M. Ewais, N.H.A. Besisa, A. Ahmed, Aluminum titanate based ceramics from aluminum sludge waste. Ceram. Int. 43, 10277–10287 (2017)

    Article  CAS  Google Scholar 

  6. F. Bakhshandeh, A. Azarniya, H.R. Madaah Hosseini, S. Jafari, Are aluminium titanate-based nanostructures new photocatalytic materials? Possibilities and perspectives. J. Photochem. Photobiol. A 353, 316–324 (2018)

    Article  Google Scholar 

  7. S. Dastagiri et al., Induced dielectric behavior in high dense AlxLa1xTiO3 (x = 0.2–0.8) nanospheres. J. Mater. Sci. 30, 20253–20264 (2019). https://doi.org/10.1007/s10854-019-02409-3

    Article  CAS  Google Scholar 

  8. S. Dastagiri et al., Colossal dielectric behavior in Al0.8GdyLa0.2yTiO3 (y = 0.01–0.04) nanostructures. J. Mater. Sci. 32, 8017–8032 (2020). https://doi.org/10.1007/s10854-021-05525-1

    Article  CAS  Google Scholar 

  9. S. Dastagiri et al., Defect dipole polarization mechanism in low-dimensional Europium substituted Al0.8La0.2TiO3 nanostructures. Physica E 120, 114058 (2020). https://doi.org/10.1016/j.physe.2020.114058

    Article  CAS  Google Scholar 

  10. M.A. Mahdi, S.R. Yousefi, L.S. Jasim, M. Salavati-Niasari, Green synthesis of DyBa2Fe3O.7988/DyFeO3 nanocomposites using almond extract with dual eco-friendly applications: photocatalytic and antibacterial activities. Int. J. Hydrogen Energy 47(31), 14319–14330 (2022). https://doi.org/10.1016/j.ijhydene.2022.02.175

    Article  CAS  Google Scholar 

  11. S.R. Yousefi, M. Ghanbari, O. Amiri, Z. Marzhoseyni, P. Mehdizadeh, M. Hajizadeh-Oghaz, M. Salavati-Niasari, Dy2BaCuO5/Ba4DyCu3O9.09 S-scheme heterojunction nanocomposite with enhanced photocatalytic and antibacterial activities. J. Am. Ceram. Soc. 104(7), 2952–2965 (2021). https://doi.org/10.1111/jace.17696

    Article  CAS  Google Scholar 

  12. S.R. Yousefi, H.A. Alshamsi, O. Amiri, M. Salavati-Niasari, Synthesis, characterization and application of Co/Co3O4 nanocomposites as an effective photocatalyst for discoloration of organic dye contaminants in wastewater and antibacterial properties. J. Mol. Liquids 337, 116405 (2021). https://doi.org/10.1016/j.molliq.2021.116405

    Article  CAS  Google Scholar 

  13. S.R. Yousefi, A. Sobhani, H.A. Alshamsi, M. Salavati-Niasari, Green sonochemical synthesis of BaDy2NiO5/Dy2O3 and BaDy2NiO5/NiO nanocomposites in the presence of core almond as a capping agent and their application as photocatalysts for the removal of organic dyes in water. RSC Adv. 11(19), 11500–11512 (2021). https://doi.org/10.1039/d0ra10288a

    Article  CAS  Google Scholar 

  14. S.R. Yousefi, O. Amiri, M. Salavati-Niasari, Control sonochemical parameter to prepare pure Zn0.35Fe2.65O4 nanostructures and study their photocatalytic activity. Ultrason. Sonochem. 58, 104619 (2019). https://doi.org/10.1016/j.ultsonch.2019.104619

    Article  CAS  Google Scholar 

  15. S.R. Yousefi, D. Ghanbari, M. Salavati-Niasari et al., Photo-degradation of organic dyes: simple chemical synthesis of Ni(OH)2 nanoparticles, Ni/Ni(OH)2 and Ni/NiO magnetic nanocomposites. J. Mater. Sci. 27, 1244–1253 (2016). https://doi.org/10.1007/s10854-015-3882-6

    Article  CAS  Google Scholar 

  16. P. Mehdizadeh, M. Jamdar, M.A. Mahdi, W.K. Abdulsahib, L.S. Jasim, S. Raheleh Yousefi, M. Salavati-Niasari, Rapid microwave fabrication of new nanocomposites based on Tb–Co–O nanostructures and their application as photocatalysts under UV/Visible light for removal of organic pollutants in water. Arab. J. Chem. 16(4), 104579 (2023). https://doi.org/10.1016/j.arabjc.2023.104579

    Article  CAS  Google Scholar 

  17. S.R. Yousefi, M. Masjedi-Arani, M.S. Morassaei, M. Salavati-Niasari, H. Moayedi, Hydrothermal synthesis of DyMn2O5/Ba3Mn2O8 nanocomposite as a potential hydrogen storage material. Int. J. Hydrogen Energy 44(43), 24005–24016 (2019). https://doi.org/10.1016/j.ijhydene.2019.07.113

    Article  CAS  Google Scholar 

  18. S.R. Yousefi, D. Ghanbari, M. Salavati-Niasari, Hydrothermal synthesis of nickel hydroxide nanostructures and flame-retardant poly vinyl alcohol and cellulose acetate nanocomposites. J. Nanostruct. 6(1), 77–82 (2016). https://doi.org/10.7508/jns.2016.01.00

    Article  Google Scholar 

  19. R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst. A 32, 751–767 (1976)

    Article  Google Scholar 

  20. Hume-Rothery Rules, Van Nostrand’s Scientifific Encyclopedia (Wiley, Hoboken, 2002)

    Google Scholar 

  21. P. Scherrer, Bestimmung der Grosse und der Inneren Struktur von Kolloidteilchen Mittels Rontgenstrahlen, Nachrichten von der Gesellschaft der Wissenschaften. Gottingen. Mathematisch-Physikalische Klasse 2, 98–100 (1918)

    Google Scholar 

  22. R. Narzary, B. Dey, S. Sen, B.N. Parida, A. Mondal, S. Ravi, S.K. Srivastava, Influence of Na/Mg Co-doping in tuning microstructure, transport, optical, and magnetic properties of TiO2 compounds for spintronics applications. Magnetochemistry 8(11), 150 (2022). https://doi.org/10.3390/magnetochemistry8110150

    Article  CAS  Google Scholar 

  23. R. Narzary, B. Dey, S.N. Rout, A. Mondal, G. Bouzerar, M. Kar, S. Ravi, S.K. Srivastava, Influence of K/Mg co-doping in tuning room temperature d0 ferromagnetism, optical and transport properties of ZnO compounds for spintronics applications. J. Alloys Compd. 934, 167874 (2023). https://doi.org/10.1016/j.jallcom.2022.167874

    Article  CAS  Google Scholar 

  24. C.G. Koops, On the dispersion of resistivity and dielectric constant of some semiconductors at audio frequencies. Phys. Rev. 83, 121–124 (1951)

    Article  CAS  Google Scholar 

  25. K.W. Wagner, The distribution of relaxation times in typical dielectrics. Ann. Phys. 40, 817 (1913)

    Article  Google Scholar 

  26. A. Mallikarjuna et al., Structural transformation, and high negative dielectric constant behaviour in (1–x) (Al0.2La0.8TiO3) + (x) (BiFeO3) (x = 0.2–0.8) nanocomposites. Physica E 122, 114204 (2020)

    Article  CAS  Google Scholar 

  27. A. Azarniya, A. Azarniya, H.R.M. Hosseini, A. Simchi, Nanostructured aluminium titanate (Al2TiO5) particles and nanofibers: synthesis and mechanism of microstructural evolution. Mater. Charact. 103, 125–132 (2015)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

DMD: Synthesis, analysis, characterization, and writing manuscript. PAK: Supporting the work. NSVK: Guiding, analysis, editing, and corresponding.

Corresponding author

Correspondence to N. Satya Vijaya Kumar.

Ethics declarations

Conflict of interest

The authors declare that they have not received any fund from funding agencies.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Madhuri Devi, D., Anita Kumari, P. & Satya Vijaya Kumar, N. Structure, optical, and dielectric properties of AlCuTiO3 nanoparticles. J Mater Sci: Mater Electron 34, 1174 (2023). https://doi.org/10.1007/s10854-023-10608-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10608-2

Navigation